

Environmental Determinants of Enteric Infectious Disease

PI: BENJAMIN ZAITCHIK, JOHNS HOPKINS UNIVERSITY

CO-I: MARGARET KOSEK, UNIVERSITY OF VIRGINIA

CO-I: HAMADA BADR, JOHNS HOPKINS UNIVERSITY

CO-I: JIM NELSON, BRIGHAM YOUNG UNIVERSITY

POSTDOC: JOSH COLSTON, UNIVERSITY OF VIRGINIA

Project goal

Establish the feasibility of Earth Observation-informed Enteric Infectious Disease (EID) risk mapping, monitoring, and prediction systems

We are doing this through collaboration with multiple EID studies performed at sites around the world

Collaborating studies

Earth Observation data

None of these infection studies included collection of data on climate or environment.

Earth Observations offer an opportunity to fill this gap.

Accomplishments from previous years

- 1. Evaluated EO performance at MAL-ED sites, and published results collaboratively with MAL-ED site PIs (Colston et al., 2018)
- 2. Published the results of the rotavirus model collaboratively with site PIs (Colston et al., 2019)
- 3. Participated in NASA's pilot commercial data buy program
- Performed a targeted study of ENSO influence on EID at our Peru MAL-ED site (Colston et al., 2020a)
- 5. Published a study of static household-level factors associated with pathogen-specific disease risk (Colston et al., 2020b)
- 6. Disseminated rotavirus and shigella risk to partners at study sites and health ministries
- Piloted online visualization tool

Accomplishments this year

- 1. Completed multi-pathogen modeling analyses (Colston et al., In Review)
- 2. Implemented optimized Bayesian predictive modeling approach and completed application to Shigella (Badr et al., *In preparation*)
- 3. (Nearly) finalized online visualization tool

Multi-pathogen modeling

Multi-pathogen modeling

Multi-pathogen modeling

Differing sensitivities

Shigella modeling

Estimated annual average prevalence of Shigella infection in children age 12 - 23 months

Shigella modeling

Estimated annual average prevalence of Shigella infection in children age 12 - 23 months

Visualization tool

Timeline

	PY1				PY2				PY3			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Objective 1												
Perform and evaluate retrospective LDAS simulations												
Create unified database of EID predictors												
Develop and evaluate statistical EID models												
Objective 2												
Perform EID-specific regionalization												
Characterize regionalization uncertainty												
Objective 3												
Generate maps of EID potential by disease and season												
Implement monitoring/warning systems for selected EID												
Produce projections of future EID potential												
Objective 4												
Create Tethys app for display and analysis of EID database												
Integrate HiClimR to Tethys												
Present preliminary system to MAL-ED community												
Refine and operationalize system												

ARL

Current: ARL 6

Expectation: ARL 7 at our next partner feedback session

Goal: ARL 7

COVID-19

BEN ZAITCHIK, HAMADA BADR, LAUREN GARDNER, JUSTIN LESSLER – JHU MARGARET KOSEK, JOSH COLSTON - UVA

Why have studies of environmental sensitivity of COVID-19 been so mixed?

A short and unreliable COVID-19 data record

Inconsistent and sometimes inappropriate definition of response variable

Inconsistent and sometimes inappropriate scales of analysis

Difficulty of accounting for non-meteorological predictors: behavior, policy, demographics, cultural practices, etc.

Differences between climate zones

Diverse and sometimes questionable methodologies

Challenge of isolating climate influence early in the pandemic

Climatological, Meteorological and Environmental factors in the COVID-19 pandemic

An international virtual symposium on drivers, predictability and actionable information

https://public.wmo.int/en/events/meetings/covid-19-symposium

https://www.nature.com/articles/s41467-020-19546-7

https://library.wmo.int/index.php?lvl=notice_display&id=2185 7#.YNmy7i2w3UI

Create a unified, reliable data record

United States:

Admin 0
Country
ISO 3166 1
2 letters

Admin 1
State

FIPS

+ 2 digits

061
Admin 2
County
FIPS
+ 3 digits

10476

Admin 3

District

ZCTA
+ 5 digits

Europe:

Admin 0
Country
ISO 3166 1
2 letters

Admin 1
State *

NUTS 1
+ 1 digit/letter

1
Admin 2
County **

NUTS 2
+ 1 digit/letter

Admin 3
District
NUTS 3
+ 1 digit/letter

Global:

AU
Admin 0
Country
ISO 3166 1
2 letters

ACT
Admin 1

Province/State

ISO 3166 2 principal divisions

Admin 2 County

Local 2 country specific

Admin 3

District

Local 3 country specific

- Maps all geospatial units globally into a unique standardized ID.
- Standardizes administrative names and codes at all levels.
- Standardizes dates, data types, and formats.
- Unifies variable names, types, and categories.
- Merges data from all credible sources at all levels.
- Cleans the data and fixing confusing entries.
- Integrates hydrometeorological variables at all levels.
- Optimizes the data for machine learning applications.

https://github.com/hsbadr/COVID-19

https://www.medrxiv.org/content/10.1101/2021.05. 05.21256712v1

^{*} NUTS 1 level represents groups of subregions (or equivalent) for some European countries (e.g., Italy).

^{**} NUTS 2 level represents subregions (or equivalent) for some European countries (e.g., Italy).

Generate a response variable

Rt ~s(T) + s(SH) + s(I4) + ti(Tstatestd, SH)* + ti(I4, Date) + ti(T, SH) + te(Date, Latitude, Longitude)** + s(state)

Left plot in each panel: example of predicted Rt Right plot: smooth terms

Rt \sim s(T) + s(SH) + s(I4) + ti(Tstatestd, SH) + ti(I4, Date) + ti(T, SH) + s(state)

Kerr et al. (In Prep)

Thank You