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Mortality
Globally, diarrhea kills 2,195 children every day

This is 1 out of 9 child deaths, worldwide

It is more than AIDS, malaria, and measles combined

It is the second leading cause of death in children less than five years old
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Morbidity

Impaired cognitive development

Stunting

Reduced vaccine response
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https://borgenproject.org/what-causes-stunting/
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EID are preventable and treatable

In some cases, vaccines are available

Improved Water, Sanitation and Hygiene
(WASH) infrastructure and behavior is

critical

Those suffering from diarrhea can be
treated with oral rehydration therapy

Hector Retamal/AFP/Getty Images
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Project goal

Establish the feasibility of Earth Observation-informed EID risk
mapping, monitoring, and prediction systems

We are doing this through collaboration with multiple EID studies
performed at sites around the world
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Current list of collaborating studies

Equator

Ténzania

Tropic of Capricorn

Studies O Single hospital studies  Number of samples
O MAL-ED O iLINS-DYAD/LCNI-5 o0 <100
O GEMS O Urban & Rural Guatemala O 100-499
Novel biomarkers < Thai Hospitals O 500 - 999
O RECODISA O AISN
O SHINE ) Rotavac O 1,000 - 1,999
(o)

GERMS-SA
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Earth Observation data

Daily weather station measurements
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Accomplishments

PY1:

1. Evaluated EO performance at MAL-ED sites, and published results collaboratively with MAL-
ED site Pls (Colston et al., 2018)

2. Generated a preliminary rotavirus prediction model based on MAL-ED site data and Earth
Observations

PY2:

1. Published the results of the rotavirus model collaboratively with site Pls (Colston et al., 2019)
2. Performed preliminary regionalization based on rotavirus predictors

3. Built template visualization app in Tethys

4. Participated in NASA’s pilot commercial data buy program
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Rotavirus transmission pathways
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Accomplishments

PY3:

1. Performed a targeted study of ENSO influence on EID at our Peru MAL-ED site (Colston et al.,
2019)

2. Substantially enhanced our database of predictor variables

3.  Nearly completed models of Shigella

4.  Produced maps of Shigella risk for dissemination to partners
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Shigella modeling results
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Variable Importance Plot

Impurity-corrected Random Forest;
Unconditional permutation scheme;
cross-validated results
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Shigella risk maps
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Understanding mechanism
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Understanding mechanism

Precipitation RH Soil Moisture  Solar Rad Surface Pres = Temperature  Wind Speed = Runoff
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Timeline and Risks

cEOEDHEALTH

PY1
Q1 Q2 Q3 Q4

PY2
Q1 Q2 Q3 Q4

PY3
Q1 Q2 Q3 Q4

Objective 1
Perform and evaluate retrospective LDAS simulations
Create unified database of EID predictors
Develop and evaluate statistical EID models

Objective 2
Perform EID-specific regionalization
Characterize regionalization uncertainty

Objective 3
Generate maps of EID potential by disease and season
Implement monitoring/warning systems for selected EID
Produce projections of future EID potential

Objective 4
Create Tethys app for display and analysis of EID database
Integrate HiClimR to Tethys
Present preliminary system to MAL-ED community
Refine and operationalize system

[
A a—

Risks

COVID has slowed our research
and communication with health
system partners

Slower feedback might limit the
number of pathogens we can
address by the end of the
project
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ARL

Current: ARL 5 for Shigella / ARL 4 for others

Expectation: ARL 7 for some pathogens by early 2021, but further
COVID-related slippage is possible

Goal: ARL 7
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COVID-19

BEN ZAITCHIK, HAMADA BADR, LAUREN GARDNER, JUSTIN LESSLER = JHU
MARGARET KOSEK, JOSH COLSTON - UVA
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Negative association
Positive association

Li et al. (2020 No association
Liu et al. (2020 Association dependent on the value
Livadiotis (2020 A
Luo et al. (2020 Unclear association
M Wang et al. (2020
Monami et al. (2020 Not analysed
Notari (2020
Oliveiros et al, (2020
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Sil and Kumar (2020
Sobral et al. (2020
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Tobias and Molina (2020
Tosepu et al. (2020
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Wu et al. (2020
Xiao-Jing et al. (2020
Xu et al. (2020

Yao et 3!. 2020
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Zhu and Xie (2020
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Why?

A short and unreliable COVID-19 data record

Inconsistent and sometimes inappropriate definition of response variable
Inconsistent and sometimes inappropriate scales of analysis

Difficulty of accounting for non-meteorological predictors: behavior, policy, demographics,
cultural practices, etc.

Differences between climate zones
Diverse and sometimes questionable methodologies

Challenge of isolating climate influence early in the pandemic
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Creating a unified, reliable data record

United States:

US 36 061 10476
. Admin0 | | Adminl | | Admin2 | | Admin3
. Country | | State | County | District
ISO 3166 1 J { FIPS J { FIPS ’ t ZCTA
2 letters + 2 digits + 3 digits + 5 digits
Europe:
DE 2 1 H
[ Admin 0 ] [ Admin 1 ] [ Admin 2 ] [ Admin 3
. Country | | State " | | County™ | | District
ISO 3166 1 } { NUTS 1 } { NUTS 2 ’ ( NUTS 3
2 letters + 1 digit/letter + 1 digit/letter + 1 digit/letter
Global:
AU ACT
[ Admin 0 ] [ Admin 1 ] [ Admin 2 ] [ Admin 3
. Country | | Province/State | | County I District
Local 3

ISO 3166 1 ] [ ISO 3166 2 ] [ Local 2 ’ {

2 letters

principal divisions country specific

country specific

" NUTS 1 level represents groups of subregions (or equivalent) for some Enropean countries (e.g., Italy).

" NUTS 2 level represents subregions (or equivalent) for some Enropean conntries (e.g., Italy).

https://github.com/hsbadr/COVID-19

Maps all geospatial units globally into a unique
standardized ID.

Standardizes administrative names and codes at
all levels.

Standardizes dates, data types, and formats.
Unifies variable names, types, and categories.
Merges data from all credible sources at all levels.
Cleans the data and fixing confusing entries.
Integrates hydrometeorological variables at all
levels.

Optimizes the data for machine learning
applications.


https://github.com/hsbadr/COVID-19

& rALTH

Creating a unified,

_ red = AdminQ, blue = Adminl, green >= Admin2 -
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Selecting a response variable

Singapore

Following graphs were generated in R using the following

EpiEstim

demiological parameters
* Daily new case data (JHU CSSE)
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Hydrometeorological data

We have a “long list” of EO to incorporate, but for now we are focused on hydrometeorology
drawn from reanalysis (NLDAS, MERRA2/FIPS and ERA5) and satellite-derived data (GPM)

Daily, spatially averaged to unit of COVID-19 case data in the harmonized database




Non-environmental covariates
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Demographics
excess pop. incidence intervention |Facebook |Google
cases deaths deaths |population [Density |score Accessibility |data Mobility |mobility
Colombia 2 2 2 2 *1 2 1
Peru 0* *0 2 1
Chile 1* 2 2 2 2 *~] 1 1
Ecuador 1 1 1 1 1 *1 1 1

District-level Population Density per square meter in Peru

icific Ocean

N

A

055110 220 330

Population density
(per square meter)

13-300
301 - 600
601 - 1000

1001 -2000

107 2001 - 3000

I 3001 - 5000

I 5001 - 2900000

Source 1: The Humanitarian Data Exchange
Source 2: WorldPop

Made by: Yen Ting, Chen
MEd student in Department of Kines iology
University of Virginia

Esri, HERE, Garmin,
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Non-environmental covariates

D e m O g ra p h i C S District-level Population Density per square meter in Peru
Non-pharmaceutical interventions A
p /// LW

scientific data

Explore our content v Journal information v

nature > scientific data » data descriptors > article R

055110 220 330

Data Descriptor | Open Access | Published: 27 August 2020

Population density

HIT-COVID, a global database tracking public health e

13-300

interventions to COVID-19 o

1001 -2000
107 2001 - 3000

Qulu Zheng, Forrest K. Jones, Sarah V. Leavitt, Lawson Ung, Alain B. Labrique, David H. Peters, Elizabeth C. I 001 - 5000 Soua s Wrkbop
B oo zoooomn Wby YT Chen
Lee, Andrew S. Azman & & HIT-COVID Collaboration University of Vg oS

Esri, HERE, Garmin, communiy

Scientific Data 7, Article number: 286 (2020) | Cite this article
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Non-environmental covariates

D e m O g r a p h i CS District-level Population Density per square meter in Peru
0\
Non-pharmaceutical interventions coer [
P // LW
Comorbidity: 3
> diabetes, obesity, HIV, hypertension, smoking, COPD, cardiovascular
disease index all compiled at AdminO globally and Admin1 for the
US mﬂ(O:an
o e A
Mobility N0 20 R Mt
> High resolution mobility data for the US and selected European ey j
countries o
I 002000

> International air travel data — oo

Sour
I 3001 - 5000 Source 2: WorldPop
Mad

I 5001 - 2900000
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Current analyses:

1. Global analysis at national level, covering ~187 countries

2. Higher-resolution global analysis at Admin 1

3. Detailed analysis for selected countries: US, Germany, Italy, Colombia, Peru, Ecuador, Chile
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Collaboration across the AST!

Our EO database has been leveraged for:
° COVID-19 stay at home orders and heat-related illness by Suwei Wang (Julia Gohlke’s group)

° County-level analysis of COVID-19 risk for the US by Bill Pan’s group
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Thank You




