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Introduction

Hydraulic variables obtained from remotely sensed data have been successfully used
to estimate river discharge (Q). However, most studies have used a rating curve based
on a single hydraulic variable or the Manning equation (multiplicative method). Kim et
al. (2019) have applied the ensemble learning regression method for estimating river
discharge (ELQ), which provided more accurate results than the previous methods
based on a single rating curve (depth-discharge relationship). However, ELQ has been
tested only over the Congo River and obtained Q at sparsely distributed dates (35-day
interval of Envisat altimetry data). In this study, we aimed at estimating daily Q from
2003 to 2005 (3-year) using ELQ and linearly interpolated altimetry-derived water levels
over the lower Mekong River as a case study.

Motivation

Monitoring Q using remotely sensed data involves obtaining hydraulic variables, such
as water levels, inundation areas, river widths, and surface water slopes, and Q has
been estimated by (1) the multiplicative method, which is the Manning equation or by
(2) a single rating curve. A key limitation in using the two representative methods of
estimating Q is that those methods used a single rating curve or multiple hydraulic
variables at a single location. In other words, a lack of information may arise when we
obtain estimates of Q using a single rating curve or the Manning equation. In contrast,
when we combine several base learners, additional information provides more
information of Q variations in time. Thus, the ELQ process leads to accurate Q
compared to the previous method based on a single rating curve.

Although ELQ is a novel method to estimate Q, there is a limitation that ELQ should use
in-situ Q for training base learners and obtaining weights. Moreover, to date, the ELQ
has been applied to only the Congo River basin. Therefore, to apply the ELQ to
ungauged or poorly gauged rivers, further investigations are required on ELQ. Using
satellite altimetry data and ELQ, this work proposes daily discharge estimation in poorly
gauged river basins. Ungauged (or poorly gauged) basins consist of several categories:
(1) genuinely ungauged basins, which have not been gauged; (2) decommissioned
basins due to reductions of budgets for measuring Q; (3) temporarily discontinued
basins due to instrumental failures or errors. We aim to estimate Q in the above cases
(2) and (3).

Ensemble Learning Regression (ELQ)

Ensemble learning indicates a series of procedure to train several functions and
combine their results based on an integration rule, either in classification or regression
problem (Brown, 2011). Typically, the ensemble process consists of two parts:
ensemble generation and ensemble integration (Zhou, 2015). Some studies added an
ensemble pruning between the ensemble generation and integration. The conceptual
design of the ensemble learning process is shown in Figure 1.
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Figure 1. Conceptual design of the ensemble learning process (Kim et al., 2019)
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Figure 2. Map of the lower Mekong River with Envisat altimetry ground tracks. The white
and red triangles indicate the in-situ gauge at Tan Chau (Latitude/Longitude:
10.801° N/105.248° E) and Envisat virtual stations, respectively. Yellow lines are
Envisat altimetry ground tracks (map data ©2018 Google).
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The study area of the lower Mekong River is shown in Figure 2. The Mekong River
basin is the sixth largest in discharge (16,000 m%/s), and the river flows through six
countries: China, Myanmar, Laos, Thailand, Cambodia, and Vietnam. In general, the
water level of the river starts to rise in May, and it reaches a peak in October, and the
low water season occurs in March and April. Figure 2 shows nine virtual stations over
the lower Mekong River. The in-situ discharge data was provided by the Asian Disaster
Preparedness Center (ADPC).

We used Envisat Radar Altimeter 2 (RA-2) Geophysical Data Record (GDR) of nine
passes. We extracted ICE-1 retracked water levels from the nine passes. The
instrument, ionosphere/troposphere, and geophysical corrections were applied.

Methods and Results

Firstly, altimetry-derived water levels from the nine virtual stations were linearly
interpolated. Then candidate ensemble learners were generated based on a rating
curve. Before the integrating process, several candidate ensemble learners (EnvP408,
866L, and 107) were pruned based on the Degree of compensation and performance of
base learners. Finally, 15 combinations of ELQ results, which integrate two rating
curves, were obtained among six base learners.

The ELQ-derived Q using two altimetry-derived water levels showed reduced RMSE of
711/763 m3s”' (RRMSE of 7.9/8.1%) on average for the training/validation datasets
compared to the Q obtained using a single rating curve. It approximately corresponds to
the mean annual discharges of Sacramento River (CA, USA).

Table 1. Error analysis of the best results of estimated Q using a rating curve and ELQ.

Method RMSE (m3s?) RRMSE (%) R%s
Rating curve (565U) 2348/ 2415 26.22/25.72 0.86/0.86
ELQ (952-866U) 1079/ 1089 12.05/11.60 0.97/0.97
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Figure 3. Performance comparison of (a) the Model 1-derived Q using EnvP952, (b)
Model-derived Q using EnvP866U, and (c) ELQ-derived Q.
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Figure 4. Degree of dominance (I5,,) and Q improvements: (a) Mekong River and (b)
Congo River. The Q improvement is calculated the RMSE of (M, — fg,o). The green
vertical line indicates the boundary where I, is 0.3.

Conclusions

(1) Our results indicate that ELQ outperforms the previous method based on a single
rating curve over the Mekong River Basin

(2) We have developed an index termed I,,;, which represents the performance of ELQ.
This finding might provide a clue of the weighting pattern in the ELQ process.
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