Latest News and Updates

September 18, 2020
The August Complex fire formed under very hot and dry conditions in northern California on August 17th, 2020. Reportedly, 37 individual fires initiated by lightning strikes merged to create this conflagration, which claimed the life of one firefighter on August 31st, 2020 according to the U.S. Forest Service. Researchers from the MISR Active Aerosol Plume-Height (AAP) Project, based out of NASA Goddard Space Flight Center and the University of Maryland, along with colleagues from JPL and the NASA Langley Research Center used data from multiple Earth observing satellites to map the properties and dispersion of smoke plumes from the August Complex fires on August 31st. The true-color image below was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA’s Terra satellite at about 12:15pm local time on that day. Fire hot-spots, identified at 4 microns wavelength, are highlighted as red dots and superposed on the image. By September 2nd the fire had consumed over 240,000 acres and was about 20% contained. Credits: MISR Active Aerosol Plume-Height (AAP) Project / R.A. Kahn, K.J. Noyes, J. Limbacher (NASA Goddard Space Flight Center), A. Nastan (JPL-Caltech), J. Tackett, J-P. Vernier (NASA Langley Research Center) The Multi-Angle Imaging Spectro-radiometer (MISR) instrument aboard NASA’s Terra satellite obtains less coverage than MODIS. However, MISR stereo imagery makes it possible to map injection heights and associated wind vectors for wildfire smoke and volcanic eruption plumes. With these data researchers can also retrieve smoke particle properties, track their evolution downwind, and distinguish them from meteorological clouds.

 

September 16, 2020
Damage Proxy Map of the LNU Lightning Complex fires showing likely damaged areas in red and yellow.
As record-setting fires continue to ravage the western United States, with large fire complexes currently burning in California, Oregon, Washington State, and Colorado, coordinators and scientists from the NASA Earth Applied Sciences Disasters Program are hard at work developing maps, imagery and analysis to aid local agencies and response teams in understanding the impacts from the fires and the potential risks to people, infrastructure, and the environment. In late August the Disasters Program activated coordination efforts in response to the fires in California, and since then has been working closely with local stakeholders including the California National Guard, the California Geological Survey, the Federal Emergency Management Agency (FEMA), the California State Geographic Information Officer, the California Office of Emergency Services (CalOES), and the California Department of Forestry and Fire Protection (CalFire). As fires began to burn in Oregon, Washington State, and Colorado the Program started working with stakeholders in those regions, including the Washington State Emergency Management Division, the Olympic Region Clean Air Agency, the Washington State Department of Natural Resources, the Washington Department of Ecology, and the Colorado Department of Public Safety. The Disasters Program is also reaching out to emergency management agencies in Oregon, and has recently began discussions with the U.S. Army Corps of Engineers (USACE). Support is being provided directly to these users through emails and virtual meetings, and through data products digitally distributed on the NASA Disasters Mapping Portal. View fullscreen on the NASA Disasters Mapping Portal

 

September 16, 2020
NASA's C-20A research aircraft takes off with the UAVSAR instrument attached below during an earlier flight from Edwards Air Force Base near Palmdale, California. Credits: NASA
Video of NASA Armstrong & JPL Take Flight to Study California's Wildfire Burn Areas While the agency's satellites image the wildfires from space, scientists are flying over burn areas, using smoke-penetrating technology to better understand the damage. A NASA aircraft equipped with a powerful radar took to the skies this month, beginning a science campaign to learn more about several wildfires that have scorched vast areas of California. The flights are being used to identify structures damaged in the fires while also mapping burn areas that may be at future risk of landslides and debris flows. They're part of the ongoing effort by NASA's Applied Sciences Disaster Program in the Earth Sciences Division, which utilizes NASA airborne and satellite instruments to generate maps and other data products that partner agencies on the ground can utilize to track fire hotspots, map the extent of the burn areas, and even measure the height of smoke plumes that have drifted over California and neighboring states. Equipped with the Uninhabited Air Vehicle Synthetic Aperture Radar (UAVSAR) instrument, the C-20A jet began flights from NASA's Armstrong Flight Research Center near Palmdale, California, on Sept. 3. This first flight surveyed the LNU Lightning Complex burn area northeast of San Francisco. A Sept. 9 flight focused on fires south of Monterey in Central California.

 

September 15, 2020
This diagram illustrates the processes occurring within hailstorms, and how satellites observe these storms and the damage they cause to the land surface. Credit: NASA
As a child, Kristopher Bedka was fascinated with weather extremes. He grew up in Chicago and always wanted to experience the maximum that the atmosphere had to offer. “When it was forecasted to be cold, I always wanted to see and feel what record cold and snow were like. I wanted us to have two feet of snow instead of two inches. When a severe storm warning was issued, I always stared out the window wanting to see the worst of the storm.” In high school he was given a survey that asked him to choose what he wanted to be when he grew up, and among all of the options meteorologist stood out to him. After reading about some of the possibilities within the field of meteorology, he decided to give it a try. After graduating from high school he went on to receive his Bachelor of Science in meteorology at Northern Illinois University, and his Master of Science in atmospheric sciences and meteorology at the University of Wisconsin-Madison.

 

September 12, 2020
OMPS shows smoke plumes from the California fires
Climate and fire scientists have long anticipated that fires in the U.S. West would grow larger, more intense, and more dangerous. But even the most experienced among them have been at a loss for words in describing the scope and intensity of the fires burning in West Coast states in September 2020. Lightning initially triggered many of the fires, but it was unusual and extreme meteorological conditions that turned some of them into the worst conflagrations in the region in decades. Record-breaking air temperatures, periods of unusually dry air, and blasts of fierce winds—on top of serious drought in some areas—led fires to ravage forests and loft vast plumes of smoke to rarely seen heights. “We had a perfect storm of meteorological factors come together that encouraged extreme burning,” said Vincent Ambrosia, the associate program manager for wildfire research in NASA’s Earth Applied Sciences Program. “That was layered on top of shifting climate patterns—a long term drying and warming of both the air and vegetation—that is contributing to the growing trend we are seeing toward larger, higher-intensity fires in the U.S. West.” The buildup of fuels may be another relevant factor. Human efforts to extinguish most fires over the past 120 years has led to an increase in old, overgrown forests in the West that burn intensely when they catch fire, explained Ambrosia.

 

September 10, 2020
GOES imagery of a hailstorm
When a hail storm strikes, the damage can be catastrophic for homes, businesses, agriculture and infrastructure. In fact, with damage totals sometimes exceeding $1 billion, hailstorms are the costliest severe storm hazard for the insurance industry, making reliable, long-term data necessary to estimate insured damage and assess extreme loss risks. Video of Hailstorm near Burkburnett, Texas A Geostationary Operational Environmental Satellite–16 (GOES-16) animation of color-enhanced infrared wavelength temperature overlaid upon visible wavelength brightness imagery from May 22-23, 2020. White-colored areas embedded within magenta shading indicate cloud temperatures colder than -80 degrees Celsius and strong updrafts, commonly referred to as overshooting cloud tops. A plume of warmer colors (red) with different cloud top texture streaming to the northeast out of the updraft near Burkburnett, Texas indicate an above anvil cirrus plume, a strong indicator of ice injection into the stratosphere and an extremely severe storm. Hail exceeding 5 inches (12.5 cm) in diameter was observed in Burkburnett and 4-inch (10 cm) diameter hail was reported near Davidson, Oklahoma. That’s why a team of NASA scientists is working with international partners to use satellite data to detect hailstorms, hail damage, and improve our understanding of hail frequency. This project will provide long term regional- to global-scale maps of severe storm occurrence, catastrophe models, and new methods to improve short-term forecasting of these storms. “We’re using data from many satellite sensors to really dig in and understand when and where hailstorms are likely to occur and the widespread damage that they can cause," said Kristopher Bedka, principal investigator at NASA's Langley Research Center in Hampton, Virginia. "This is a first-of-its-kind project and we’re beginning to show how useful this satellite data can be to the reinsurance industry, forecasters, researchers, and many other stakeholders.”

 

September 4, 2020
At least seven major wildfires were burning across California as early as 10:30 a.m. PDT on August 20th, 2020.
Researchers from the MISR Active Aerosol Plume-Height (AAP) Project, based out of NASA Goddard Space Flight Center in Greenbelt, Maryland and the University of Maryland, used data from NASA's Terra satellite to map the properties and near-source dispersion of smoke plumes from California’s Milepost 21 wildfire that burned during August 2020.  Credit: MISR Active Aerosol Plume-Height (AAP) Project / K.J. Noyes, R. Kahn, J. Limbacher (NASA Goddard Space Flight Center) At least seven major wildfires were burning across California as early as 10:30 a.m. PDT on August 20th, 2020. They are identified as hot-spots at 4 microns wavelength, highlighted as red dots and superposed on this true-color image from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the NASA Terra satellite.  Wildfires tend to increase in intensity during the day, and fire activity usually peaks in the late afternoon. The Multi-Angle Imaging Spectro-radiometer (MISR), orbiting aboard NASA’s Terra satellite, obtains less coverage than MODIS. However, MISR stereo imagery makes it possible to map injection heights and associated wind vectors for wildfire smoke and volcanic eruption plumes. With these data, we can also retrieve smoke particle properties, track their evolution downwind, and distinguish them from metrological clouds.

 

September 3, 2020
Photograph from the International Space Station taken on July 27, 2020, showing high water levels in the river that passes through the town of Puerto Lopez, Colombia. Credit: Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space
On July 27, 2020, the International Space Station passed over the Orinoquia Nature Region in Colombia, allowing astronauts to capture photographs showing the impacts of recent flooding rainfall in the region. These photographs were then georeferenced by the Earth Science and Remote Sensing Unit at NASA Johnson Space Flight Center and sent to the National Unit for Disaster Risk Management (UNGRD) of Colombia by coordinators from the NASA Earth Applied Sciences Disasters Program to aid in identifying the extent and impact of the flooding. Photograph from the International Space Station taken on July 27, 2020, showing high water levels in the river that passes through the town of Puerto Lopez, Colombia. Credit: Image courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center When asked for feedback on the imagery, representatives from UNGRD stated: “This information was essential  to support the analysis of flood zones in a sector of the Orinoquia in Colombia … and contributed in supporting Colombian authorities during this emergency response quickly - and remotely. These images allowed us to carry out a multi-temporal analysis of the area and to identify critical sites with respect to a possible flood. “  

 

September 2, 2020
Captured by the ASTER instrument aboard NASA's Terra satellite, this false-color map shows the burn area of the River and Carmel fires in Monterey County, California. Vegetation (including crops) is shown in red; the burn area (dark blue/gray) is in the c
Earth-observing instruments on satellites and aircraft are mapping the current fires, providing data products to agencies on the ground that are responding to the emergency. As California experiences one of the worst wildfire seasons on record, NASA is leveraging its resources to help. Scientists supporting the agency's Applied Sciences Disaster Program in the Earth Sciences Division are generating maps and other data products that track active fires and their smoke plumes while also identifying areas that may be susceptible to future risks. "When disasters like this occur, we are able to swiftly respond to requests from our partners who need images and mapping data," said David Green, manager of the Disasters Program at NASA Headquarters in Washington. "Likewise, in the aftermath of the fires, our researchers will use orbital and aerial data of the burn areas to help mitigate hazards such as landslides and mudslides." Most of the data comes from the numerous satellite instruments that pass over the state, such as the MOderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the Aqua and Terra satellites, the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments aboard the Suomi-NPP satellite, and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the CALIPSO satellite.

 

September 1, 2020
Screenshot from the prototype HydroSAR Viewer app, which was developed during the hackathon to support rapid sharing of Synthetic Aperture Radar (SAR)-based flood mapping products with end users. In the future all app layers could be made available throug
Members of the NASA Earth Applied Sciences Disasters Program recently participated in the SERVIR-GEOGloWS Hackathon, a virtual app development event for participants to create geospatial and scientific web applications related to water sustainability. The Hackathon was virtually co-hosted by SERVIR, a joint venture between NASA and the U.S. Agency for International Development to provide state-of-the-art Earth observing data to improve environmental decision-making in developing nations, the Group on Earth Observations (GEO) Global Water Sustainability Program (GEOGloWS) and the Brigham Young University (BYU) Hydroinformatics Lab. The hackathon took place August 3 – 7, 2020. Screenshot from the prototype HydroSAR Viewer app, which was developed during the hackathon to support rapid sharing of Synthetic Aperture Radar (SAR)-based flood mapping products with end users. In the future all app layers could be made available through Web Mapping Service (WMS) technology upon deployment, facilitating easy embedding into the NASA Disasters Mapping Portal. Credit: NASA

 

Pages