2018 News and Updates

October 10, 2018
NASA's AIRS Captures Hurricane Michael 
NASA's Aqua satellite flew over Hurricane Michael on October 8, 2018 at 2:47 p.m. EDT (1847 UTC). The NASA AIRS instrument captured Hurricane Michael's strongest storms. AIRS also captured a thick band of storms feeding into the center from the eastern quadrant. In those areas cloud top temperatures as cold as -63 degrees Fahrenheit were found. Storms with cloud top temperatures this low have the capability to produce heavy rainfall.


October 10, 2018
NASA's MODIS Instrument Captures Hurricane Michael
On October 8, 2018 the MODIS instrument aboard NASA's Aqua satellite captured a visible image of Hurricane Michael when it was a Category 1 hurricane near the western tip of Cuba. Aqua is a NASA Earth Science satellite mission collecting information about the Earth's water cycle, including evaporation from the oceans, water vapor in the atmosphere, clouds, precipitation, soil moisture, sea ice, land ice, and snow cover on the land and ice. Additional variables also being measured by Aqua include radiative energy fluxes, aerosols, vegetation cover on the land, phytoplankton and dissolved organic matter in the oceans, and air, land, and water temperatures.


October 10, 2018
Flood Detection / Intensity from GFMS 
Flood Detection / Intensity from GFMS  NASA GFMS Flood Detection / Intensity  NASA GFMS Flood Detection / Intensity 


October 7, 2018
Palu Energy Shift
  Fig. 1: Tele-seismic data used in real-event calculation, black denotes observations and red means synthetic values. Fig. 2: Two tsunami source energies were derived: Potential Energy (PE) due to seafloor uplift and Kinetic Energy (KE) due to horizontal seafloor displacement.


October 4, 2018
The Advanced Rapid Imaging and Analysis (ARIA) team at NASA's Jet Propulsion Laboratory and Caltech in Pasadena, CA created a Damage Proxy Map (DPM) version 0.7 depicting areas in Central Sulawesi, Indonesia, including the city of Palu that are damaged. The damaged areas are depicted as red and yellow pixels. Damage occurred as a result of the magnitude 7.5 earthquake on September 28, 2018. The map is derived from synthetic aperture radar (SAR) images from the ALOS-2 satellite, operated by Japan Aerospace Exploration Agency (JAXA).  The map covers an area of 67 by 70 kilometers, shown by the large red polygon. Each pixel measures about 30 meters across. The color variation from yellow to red indicates increasingly significant ground surface change. Preliminary validation was completed through collaboration with the Earth Observatory of Singapore comparing local media information and photos. Damage proxy maps are used as a guide to identify damaged areas; however, the maps may be less reliable over vegetated areas. For example, the scattered single colored pixels over vegetated areas may be false positives, and the lack of colored pixels over vegetated areas does mean that damage has not occurred. The DPM was created by the NASA-JPL / Caltech ARIA team, and the ALOS-2 data was provided by JAXA. The Earth Observatory of Singapore coordinated with the Sentinel Asia to timely task the ALOS-2 satellite. The algorithm development was carried out at JPL under a contract with NASA. For more information about ARIA, visit: http://aria.jpl.nasa.gov


October 3, 2018
MODIS near Real-Time Data to Detect Flooding in Indonesia
This map was created from the Moderate Resolution Imaging Spectroradiometer (MODIS) Near Real-Time Global (NRT) Flood Mapping product.  This image shows the 3-day composite flood (new/anomalous) water in red on top of the surface (known/existing) water in yellow. According to several news media outlets, many coastal buildings and streets were already flooded on September 28, 2018, indicating that an initial wave had already hit the coast in Palu, Indonesia.  (Source: The New York Times, https://www.nytimes.com/2018/09/28/world/asia/tsunami-palu-indonesia-ear...). The MODIS Near Real-Time (NRT) Global Flood Mapping Project produces global daily surface and flood water maps at approximately 250 m spatial resolution. NASA Land, Atmosphere Near real-time Capability for EOS (LANCE) provides data to the NRT Global MODIS Flood Mapping initiative. This project was developed in collaboration with Bob Brakenridge at the Dartmouth Flood Observatory (DFO): http://floodobservatory.colorado.eduUsing MODIS Near Real-Time Data to Detect Flooding in Indonesia


October 3, 2018
USGS Landsat 8 Imagery
Credit: USGS, Robert Brakenridge (Dartmouth Flood Observatory at the University of Colorado) and Albert Kettner (Dartmouth Flood Observatory at the University of Colorado). This image shows the maximum observed flooding areas using Landsat 8 and Copernicus / ESA Sentinel SAR data for Tropical Storm Florence. Landsat 8 is jointly managed by NASA and the United States Geological Survey (USGS). Copernicus is supported by the European Commission.


October 3, 2018
Landsat 8 Image in Indonesia
  Ball Aerospace & Technologies Corporation Operational Land Imager (OLI) on the United States Geological Survey and NASA’s Landsat 8 satellite captured a natural-color image of Palu, Indonesia on October 2, 2018. The second image shows the same area before the earthquake and tsunami. The false-color (bands 6-5-2) images make it easier to distinguish between urban areas (purple-gray), vegetation (green), and upturned soil (brown and tan).


September 26, 2018
Landsat 8 colored dissolved organic matter (CDOM) imagery acquired 9/19/18.
Landsat 8 colored dissolved organic matter (CDOM) imagery acquired 9/19/18. USGS's Landsat 8 satellite has captured colored dissolved organic matter (CDOM) imagery after Hurricane Florence’s destruction. NASA scientists use this imagery to help inform state and local agencies on water quality post-Hurricane Florence. The image reveals how soils, sediments, decaying leaves, pollution, and other debris have discolored the waters in the swollen rivers, bays, estuaries, and the nearshore ocean. These debris are an important measure of water quality and has important implications for drinking water, aquatic ecosystems and metal transport. CDOM was seen in high concentrations, even in the ocean around North Carolina’s Cape Lookout. 


September 26, 2018
Landsat 8 OLI image prior to flooding on 7/14/17.  Landsat 8 OLI image after flooding from Hurricane Florence, acquired 9/19/18. USGS's Operational Land Imager (OLI) on the Landsat 8 satellite has captured optical imagery of devastating flooding in the Carolinas from Hurricane Florence. NASA scientiets are using this imagery to help state and local agencies be better informed for recovery. Before and after Hurricane Florence swept through the Carolinas, the OLI on the Landsat 8 satellite observed several residential areas and major rivers. Post-Hurricane Florence images reveal devastating flooding from the Trent River in North Carolina. The Trent River reached an all-time high of 29 feet on September 17, more than twice the flood stage (the height at which the river will overflow and cause damage). Water levels decreased to 24 feet  by September 20, but many homes, public buildings, and roads leading to the town of Trenton, NC are full of standing water.