

Demonstration: Assessing MODIS L2 data with In Situ Data — Calibration of algorithm to derive Chl-a

Objectives

- Upload in situ measurements into SeaDAS
- Use SeaBASS data in SeaDAS
- Compare in situ measurements with satellite derived measurements
- Calibrate Chl-a algorithm coefficients based on in situ measurements

SeaBASS website

https://seabass.gsfc.nasa.gov

File Search:

- -Measurement dates
- -Location
- -Parameters measured (Products)

Click on Perform File Search

SeaBASS - Search Results

Visualize results in different ways:

SeaBASS data

- Format is key when uploading in situ observations into SeaDAS
- Recommendations:
 - Try not to manipulate data in spreadsheets
 - Use Plain text in text editors
 - Save as tab delimited
 - Downloading data from SeaBASS doesn't guarantee data will upload into SeaDASS.
 Format needs to be reviewed

SeaBASS data

Original file downloaded from SeaBASS

```
/begin_header
/received=20170221
/identifier_product_doi=10.5067/SeaBASS/OPTICAL_LAYERS/DATA001
/investigators=Rick Gould
/affiliations=Naval Research Laboratory Stennis Space Center
/contact=gould@nrlssc.navy.mil
/experiment=Optical Layers
!/experiment=2016mar Optical Lavers
/cruise=RV_Pelican_201603
/station=NA
/data_file_name=Mar2016_Optical_Layers_hplc.txt
/documents=Gould 05 15 Report.xlsx
/calibration files=wesley.goode@nrlssc.navy.mil
/data_type=pigment
/data_status=preliminary
/start_date=20160317
/end date=20160327
/start time=08:15:00[GMT]
/end_time=02:44:00[GMT]
/north latitude=30.21228[DEG]
/south_latitude=28.64473[DEG]
/east_longitude=-88.20968[DEG]
/west longitude=-90.6612[DEG]
/cloud percent=NA
/secchi_depth=NA
/water_depth=NA
/wave_height=NA
/wind_speed=NA
      Tot[Chl a] = Monovinyl chlorophyll a + Divinyl chlorophyll a + Chlorophilide a +
    HPLC run by Chrystal Thomas at NASA GSFC
    SEABASS STAFF NOTE: sample notation dup indicates same bottle/sample but a second f
 twice
 /missing=-999
 /below_detection_limit=-8888
 /delimiter=tab
/fields=sample,month.day,year,hour,minute,second.lat,lon,depth,Tot Chl a,Tot Chl b,To
fuco,Allo,Diadino,Diato,Fuco,Perid,Zea,MV Chl a,DV Chl a,Chlide a,MV Chl b,DV Chl b,S
PSP,Tcar,Tacc,Tpg,DP,Tacc Tchla,PSC Tcar,PPC Tcar,TChl Tcar,PPC Tpg,PSP Tpg,Tchla Tpg
/units=none,mo,dd.yyyy,hh,mn,ss,degrees,degrees,m,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,m
m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m^3,mg/m
m'3, none, none, none, none, none, none, none
/end_header
                                                                                                                   29.253633
S01-1 3
                                                                                                                                                    -90.6612
0.104 0.012 0.464
                                                0.145
                                                                 0.019
                                                                                 1.150
                                                                                                   -8888.000
                                                                                                                                   0.272
                                                                                                                                                  0.048
0.019
                -8888.000
                                                 1.759
                                                                 0.228
                                                                                 0.681
                                                                                                  2.440
                                                                                                                 0.909
                                                                                                                                  1.246
                                                                                                                                                  2.668
                                                                                                                                                                  0.781
                                                                  2016
                                                                                                                                   29.253633
S01-1dup
                                                 17
                                                                                                   15
                                                                                                                                                                    -90.E
0.033 0.104 0.012 0.462
                                                                 0.146
                                                                                 0.018
                                                                                                  1.138
                                                                                                                   -8888.000
                                                                                                                                                   0.265
                                                                                                                                                                  0.046
0.175
                                 -8888.000
                                                                 1.727
                                                                                  0.227
                                                                                                  0.682
                                                                                                                  2.409
                                                                                                                               0.909
                                                                                                                                                  1.233
                                                                                                                                                                  2.636
                                                                                                                                                    -90.6612
                                 17
                                                                                  15
                                                                                                                   29.253633
                                                                                                                                                  0.028 -8888
0.041 0.006
                                0.431 0.031 0.014
                                                                                 0.847
                                                                                                  -8888.000
                                                                                                                                   0.098
0.130
              0.017
                                 -8888.000
                                                                 1.159
                                                                                 0.118
                                                                                                  0.500
                                                                                                                                 0.618
                                                                                                                                                  0.832
                                                                                                                 1.659
```

Reformatted dataset

```
/begin_header
/received=20170221
/identifier_product_doi=10.5067/SeaBASS/OPTICAL_LAYERS/DATA001
/investigators=Rick_Gould
/affiliations=Naval Research Laboratory Stennis Space Center
/contact=gould@nrlssc.navy.mil
/experiment=Optical_Layers
!/experiment=2016mar Optical Layers
/cruise=RV_Pelican_201603
station=S01-1,S01-2,S01-3,S01-4,S01-5,S01-6,S01-7,S01-8,S01-9,S01-10,S01-11,S01-12,S01-13,S
23,501-24,501-25,501-26,501-27,501-28,501-29,501-30,501-31,501-32,501-33,501-34,501-35,501-
S01-46,S01-47,S01-48,S01-49,S01-50,S01-51,S01-52,S01-53,S01-54,S01-55,S01-56,S01-57,S01-58,
 -68,S01-69,S01-70,S01-70,S01-71,S01-72,S01-73,S01-74,S01-75,S01-76,S01-77,S01-78,S01-79,S01
/data file name=Mar2016 Optical Layers hplc.txt
/documents=Gould 05 15 Report.xlsx
/calibration_files=wesley.goode@nrlssc.navy.mil
/data_type=pigment
/data status=preliminary
/start date=20160317
/end date=20160327
/start_time=08:15:00[GMT]
/end_time=02:44:00[GMT]
/north_latitude=30.21228[DEG]
/south_latitude=28.64473[DEG]
/east_longitude=-88.20968[DEG]
/west_longitude=-90.6612[DEG]
/cloud_percent=NA
/secchi depth=NA
/water_depth=NA
/wave height=NA
/wind_speed=NA
  Tot[Chl a] = Monovinyl chlorophyll a + Divinyl chlorophyll a + Chlorophilide a + Chlor
  HPLC run by Chrystal Thomas at NASA GSFC
 SEABASS STAFF NOTE: sample notation dup indicates same bottle/sample but a second filter
/missing=-999
/below_detection_limit=-8888
/delimiter=tab
/fields=date, time, station, lat, lon, depth, Tot_Chl_a"
/units=none,yyyymmdd,hh:mm:ss,degrees,degrees,m,mg/m^3"
/end_header
20160321
               0:14:00 S01-16 30.198617
                                               -88.911217
20160321
               0:14:00 501-17 30.198617
                                               -88.911217
                                                                      3.338
20160321
               0:14:00 S01-18 30.198617
                                               -88.911217
                                                                      3.951
20160321
               0:14:00 S01-19 30.198617
                                               -88.911217
                                                                      4.19
20160321
               4:26:00 S01-20 30.212283
                                               -88.668667
                                                                      3.551
20160321
               4:26:00 S01-21 30.212283
                                               -88.668667
                                                                      3.806
20160321
               4.76.00 C01_77 30 717703
                                               _RR 668667
                                                                      4 607
```


Example for Gulf of Mexico and North East US Coast

Compare in situ obs with satellite derived measurements

• Correlative Plot

• Profile Plot

6.45:1

SeaBASS data exercise

We can work with the following file:

https://seabass.gsfc.nasa.gov/archive_p review/NASA_GSFC/CLIVEC/CV5/archiv e/CV5_OM_pigments_seabass.txt

MODIS L2 Data from Ocean Color:

A2010311183000.L2_LAC_OC.nc

Pixel Extraction

Data format

PateTime	Name	Lat	Lon
YYY-MM-DDTHH:MM:SS	text	Degre	ees Degrees
OateTime 016-03-17T08:15:00 016-03-17T09:15:00 016-03-17T10:15:00 016-03-17T11:15:00 016-03-17T12:15:00 016-03-17T13:15:00 016-03-17T14:15:00 016-03-17T15:15:00 016-03-17T16:15:00	Name S01-1 S01-2 S01-3 S01-4 S01-5 S01-6 S01-7 S01-8 S01-9	Lat Lo 29.253633 29.253633 29.253633 28.9576 28.9576 28.9576 28.9576 28.9576 28.9576	-90.6612 -90.6612 -90.6612 -89.760483 -89.760483 -89.760483 -89.760483 -89.760483

NASA's Applied Remote Sensing Training Program

Water Quality Parameters from Remote Sensing Observations

Quantitative Technique

117, C01011, doi:10.1029/2011JC007395

Thank You