

Energizer: Where in the World

NASA ARSET – Overview of Earth Observations for Societal Benefit

NASA ARSET – Overview of Earth Observations for Societal Benefit

64

NASA ARSET – Overview of Earth Observations for Societal Benefit

Monitoring Fires using Earth Observations

Amita Mehta (ARSET)

October 28, 2024

Objectives

- By the end of this section, attendees will be able to identify Earth observations and access webtools to:
 - Observe historical and near real time fires (location and burned area).
 - Assess pre-fire weather conditions conducive for fires.
 - Examine pre- and post-fire vegetation cover.

Outline

- . . .
- A brief overview of fires: detection and risk assessment
- Demonstrations monitoring near-real time and historical fires using:
 - <u>NASA Worldview</u>
 - <u>Fire Information for Resource Management System (FIRMS)</u>

Monitor pre- and post-fire environmental conditions and vegetation using

- <u>Climate Engine</u>
- Exercises: NASA Worldview Monitor fires and smoke

Climate Engine – Examine pre-fire weather conditions, pre- and post-fire vegetation cover

Quick Fire Facts

- Most natural fires occur in dry and warm conditions.
- Both weather and climate conditions impact fire risk.
- Vegetation: cover and type (trees, shrubs, grasses, dead leaves), density, and height provide fuel for fires.

Data Relevant for Fire Risk Assessment

- Precipitation
- Surface Temperatures
- Soil Moisture
- Vegetation Fuel
- Topography
- Humidity
- Winds

Types of Fires

Forest Fires

Agricultural Fires

Waste Burning Fires

Fire Detection from Satellites

Satellites and Sensors

Global Coverage, typically twice per 24 hours

LEO – Low Earth Orbit GEO – Geostationary ABI – Advanced Baseline Imager

Regional Coverage, minutes to hours

Fire Detection Algorithms

- Examine thermal anomalies from satellite images to detect active fires.
- Use Brightness Temperature (Reflectance) threshold values to identify potential pixels with fires.
- Smoke and light (night) detection help locate fires.

True Color Image (or RGB) for Visible Smoke

A MODIS "true color image" uses visible wavelength bands 1, 4, & 3.

 $R = 0.66 \ \mu m$

G = 0.55 µm

B = 0.47 μm

A VIIRS "true color image" uses visible wavelength bands 11, M4, & M3.

 $R = 0.640 \,\mu m$

G = 0.555 µm

B = 0.488 μm

Demonstration and Exercises

Fire Cases

- California Bridge Fire → September 2024
- Democratic Republic of Congo → August September 2024

California Bridge Fire

Bridge Fire Information

99% Contained 55,126 Acres 2 Counties: Los Angeles, San Bernardino Not a CAL FIRE Incident. Updates will be made as they become available.

Date Started	Last Updated	Cause
09/08/2024 2:12 PM	10/21/2024 10:15 AM	Under Investigation
Incident Maps	Admin Unit	Incident Management Team
3D Map C ^a	Angeles National Forest	No team assigned
Location Camp Bonita Road, East of Camp Williams [34.2396,-117.7625]	Reports Status reports	

NASA Worldview

Climate Engine

Fires in Democratic Republic of Congo (DRC)

ESA World Cover

Global Forest Watch

NASA Earth Observatory

"More than half of the gross domestic product (the value of all the goods and services produced by a country) of <u>Democratic Republic of</u> <u>Congo</u> comes from the agriculture sector, and fire is a pivotal part of agriculture across most of Africa. People burn crop residue to clear fields after harvest, and they burn forest and other natural vegetation to clear new land for farming. Fire is also used to drive game and grazing animals to new locations and to stimulate new growth in pastures."

Exercise: Monitor Fires in DRC

- 1. Go To NASA Worldview and click on Add Layer. -
- 2. Type Fires in the Search Window. -
- 3. Select the following from the data product list:

Fires and Thermal Anomalies (Day and Night 375 m) NOAA-21 VIIRS

Fires and Thermal Anomalies (Day and Night 375 m) NOAA-20 VIIRS

Fires and Thermal Anomalies (Day and Night 375 m) Suomi NPP VIIRS

Fires and Thermal Anomalies (Day and Night 375 m) Terra and Aqua/MODIS

Exercise: Monitor Fires in DRC

- 4. Close the Layer Selection window.
 - You will see the layers added to the Layer Panel.
 - Zoom in and out of the map by using your computer mouse.
- 5. Turn all the **REFERENCE** layers on and **BASE LAYERS** off.^L

Exercise: Monitor Bridge Fire

- 6. Zoom to California on the map using +/- sign on the top right and using the computer mouse.
- 7. In the search window on the top right type 'Wrightwood, CA, USA'.
- 8. Using the time selection bar, specify 8 September to 15 September 2024.
- 9. Now zoom in further to the region around Wrightwood.

Exercise: Monitor Bridge Fire

- 10. Using the '1 Day' arrows move from 8 to 15 September 1 day at a time.
- 11. Which day do you see the maximum spread of fires?
- 12. Click on any fire spot (red dot) to see the details about the fire at that location.
- Now examine smoke by turning the true color images on from the BASE LAYERS – for example start with Suomi NPP VIIRS image on. Explore how smoke spreads between 8 to15 September.

Fires and Thermal An [1]	×
1:10	
) Latitude	34.29286 °
) Longitude	-117.69413 °
) Brightness Temperature (Channel I-4)	354.79 Kelvin
) Brightness Temperature (Channel I-5)	286.33 Kelvin
) Fire Radiative Power	322.59 MW
) Detection Confidence	Nominal Confidence
) Day/Night Flag	Daytime Fire
) Along-Scan Pixel Size	0.49 km
) Along-Track Pixel Size	0.4 km
) Acquisition Date	2024-09-10
) Acquisition Time	21:10
) Satellite	NOAA-21 / Joint Polar Satellite System-2 (JPSS-2)
) Collection And Source	Collection 2 Near Real-Time processing
) Unique Identifier	116175

Exercise: Monitor Fires in DRC

Repeat Steps 5–13 in Worldview but now zoom in on Africa / Democratic Republic of Congo and use the dates 20–31 August 2024.

Demonstration: FIRMS

• Fire Information for Resource Management System (FIRMS)

Assess Pre- and Post-Fire Conditions using Climate Engine

<u>Climate Engine</u>

ClimateEngine.org empowers users of all technical proficiencies to harness the power of cloud computing to analyze decades of Earth Observations Started through the White House Climate Data Initiative and a Google Faculty Research award, ClimateEngine.org now plays an

Examine Pre- and Post-Fire Normalized Difference Vegetation Index (NDVI)

Data Selection

GET MAP LAYER

Visual	ization	Layer	?
--------	---------	-------	---

Raster

Variable 🕐

Туре:	Search Datasets
Remote Sensing	\sim
Dataset: ၇	
Landsat 9 - 30m - 16day	\sim
Variable: 🕐	
NDVI (Vegetation Index)	\checkmark

Processing and Temporal Selection

Processing ?

Statistic (over day range): 🥐

Mean	~
Calculation: 🥐	
Values	~

Time Period (?)

Period of Record: 2021-11-07 to 2024-10-24

Custom Date Range	~
Start Date:	
2024-09-16	
End Date:	
2024-09-30	
	ŕ

GET MAP LAYER

Result

 \sim

Examine Pre- and Post-Fire Normalized Difference Vegetation Index (NDVI)

Time Series

Make Map	Make Graph	INFO
	.)	

GET TIME SERIES

Time Series Calculation: ?	
Native Time Series	
One Variable Analysis	

Region: 🍞	
Polygon	î

Add another region

Temporal Selection

Variable 1		
Variable 1 (2	
Remote Ser	nsina	~
Dataset: ?		
Landsat 9	- 30m - 16day	~
Variable: 🥐		
NDVI (Veg	etation Index)	~

Computation Resolut	ion (Scale): 🥜	
30 m		

Time Period (?)

Period of Record: 2021-11-07 to 2024-10-24

Custom Date Range	\sim
Start Date:	
2024-08-01	
End Date:	, ,
2024-09-30	
	, ,

GET TIME SERIES

Spatial Selection

NDVI Time Series

Summary

Resources : ARSET Fire-related Trainings

- Satellite Observations and Tools for Fire Risk, Detection, and Analysis
- Using Earth Observations for Pre- and Post- Fire Monitoring
- <u>Assessing the Impact of Fires on Watershed Helath</u>

- NASA Earth observations and webtools enable monitoring:
 - Near real-time fire detection.
 - Pre- and post-fire conditions.

Thank You!

NASA ARSET – Insert Training Title Here