

Applications of Carbon Dioxide Measurements for Climate-Related Studies **Part 2: The Impact of Drought on CO₂**

Agenda

Session 1: XCO2 from OCO-2 and OCO-3: Mission Recap, and Data Characteristics and Limitations

- 12:00 pm -2:00 pm U.S. East Coast Time (UTC-4:00)
- Tuesday July 9, 2024
- Invited Instructor: Vivienne Payne (JPL)

Session 2: The Impact of Drought on CO2

- 12:00 pm -2:00 pm U.S. East Coast Time (UTC-4:00)
- Wed. July 10, 2024
- Invited Instructors: Junije Liu (JPL), Karen Yuen (JPL), David Moroni (JPL)

Homework due date: August 9, 2024

Certificate: will be given to participants that attend all the live sessions and complete the homework by the due date.

Session 3: CO2 Measurements over a Large Urban Area

- 12:00 pm -2:00 pm U.S. East Coast Time (UTC-4:00)
- Tuesday July 16, 2024
- Invited Instructors Abhishek Chatterjee (JPL), Karen Yuen (JPL), David Moroni (JPL)

NASA ARSET – Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

Part 2 – Trainers

Junjie Liu OCO-2/3 Science Team Lead JPL/NASA

David Moroni

OCO-2/3 Applied Science System Engineer JPL/NASA

Karen Yuen OCO-2/3 Applications Lead JPL/NASA

Part 2 Objectives

275

By the end of Part 2, participants will be able to:

- Identify El Niño event effects that can create regional drought conditions.
- Monitor global fluxes of atmospheric CO2 concentrations to identify vulnerable areas.
- Use OCO-2 data to visualize the impacted areas and be able to do interpretation and comparison analysis.
- Identify the methods and processes to derive fluxes with atmospheric CO2 measurements and interpret regional flux perturbations and country-scale fluxes and emissions.
- Follow steps to clone the ARSET Github repository and maintain the local code.

How to Ask Questions

- Please write your questions in the Questions box and we will address them at the end of the webinar.
- Feel free to enter your questions as we go. We will try to answer all of the questions during the Q&A session after the webinar.
- The remainder of the questions will be answered in the Q&A document, which will be posted to the training website about a week after the training.

CO₂ Seasonality Observed by OCO-2 and OCO-3

- Column CO₂ concentration in the Northern hemisphere is much higher in April than in August.
- CO₂ concentration is higher in the Northern Hemisphere than in the Southern Hemisphere in April, but lower in August.
- CO₂ concentration is higher over East Asia and the east and west coast of North America.

The Relentless Rise of Atmospheric CO₂

- OCO-2 observes steady increase in atmospheric CO₂ concentration;
- The Northern Hemisphere has much larger seasonal cycles (i.e., peak to trough value in each year) than the Southern Hemisphere.
- On average, the atmospheric CO₂ concentration increases at about ~2.5ppm/year in recent years.

The change in global mean atmospheric CO_2 concentration is a result of net carbon fluxes at the surface

Credit: Jenny Mottar (NASA)

- Global: $\Delta C_{t \to t+1} = \int_{t}^{t+1} (anthropogenic (fossil fuel + land use) + net land + net ocean flux)$
- Net land carbon flux = carbon absorbed through photosynthesis carbon released through respiration and fires.
- Net air-sea exchange = ocean ecosystem, CO₂ pressure differences between ocean surface and atmosphere.

Annual global atmospheric CO₂ concentration changes = integrated surface carbon fluxes during the year

NASA ARSET - Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

Change in Regional/Local Atmospheric CO₂ concentration

Credit: Jenny Mottar (NASA)

- Regional: $\Delta C_{t \to t+1} = \text{lateral transport} + \int_{t}^{t+1} (flux)_{local}$
- The change in atmospheric CO₂ concentration at any location is not only related to local surface carbon fluxes, but also atmospheric lateral transport.

Observed OCO-2 CO₂ Column Concentration at Three Locations

- Regional: $\Delta C_{t \to t+1} = \text{lateral transport} + \int_{t}^{t+1} (flux)_{local}$
- The CO₂ concentration at all these three locations has a similar increasing trend.
- The increase in atmospheric CO₂ concentration is due to both the lateral transport and local surface carbon fluxes.
- The steady increase in atmospheric CO2 concentration at the ocean point in the left panel is attributed to fossil fuel emissions from other locations being transported to this point.

Definitions of Fluxes and Concentration

- Atmospheric CO₂: expressed as parts by million by volume (ppmv or ppm)
 - 1ppm = one particle of CO₂ molecule per 1 million particles of dry air molecules (not including water vapor)
- **Carbon fluxes**: direction and rate of transfer of carbon between Earth's carbon pools, such as the oceans, atmosphere, land, and other living things
 - Unit: gC/m²/day (carbon amount per area per time)
 - Other units: gigaton of carbon per year (GtC/year)= gC/m²/day x 365 x area x 1e-15 Teragrams of carbon per year (TgC/year) = gC/m²/day x 365 x area x 1e-12 Petagram of carbon is the same as gigaton of carbon.
- Connection between carbon fluxes and atmospheric CO₂ concentration
 - Convert from flux to mass unit and then to volume unit
 - The ratio between the number of CO2 molecules and the number of dry air molecules
 - amount of ppm=[(carbon flux) x (area) x (duration)]/12 / (the number of dry air molecules) *1e6
 - 1ppm ~= 2.14 GtC

Linking Surface Carbon Fluxes with Atmospheric CO₂ Concentration

Warmer color: higher values; cooler color: lower values

https://svs.gsfc.nasa.gov/4519/

NASA ARSET – Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

OCO-2 Samples a Snapshot of the Atmosphere

https://svs.gsfc.nasa.gov/4519/

- Each stripe on the globe represents one OCO-2 orbital track.
- OCO-2 only samples snapshots of atmospheric CO2 column in both space and time.
- Carbon released at the surface is transported throughout the globe by winds.
- The spatial patterns of atmospheric CO2 reflect both synoptic weather system and surface net carbon exchange.

Warmer color: higher values; cooler color: lower values

Atmospheric CO₂ Flux Inversion Process

Atmospheric inversion process optimizes surface carbon fluxes to best match the observations given the uncertainties in observations and the assumed prior carbon fluxes.

NASA ARSET – Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

The Prior Surface Carbon Fluxes are Adjusted to Best Match the **Observations**

- NBE: net biosphere exchange that includes all land carbon fluxes except fossil fuel emissions. Positive: carbon is released to the atmosphere; Negative: carbon is absorbed from the atmosphere.
- The posterior CO₂ concentration based on posterior fluxes better matches the observations.
- The posterior flux shows larger carbon sources over the tropics and the Southern Hemisphere and weaker carbon sources over the northern high latitudes.

NASA ARSET – Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

/m²/day

0

-1

Land Carbon Fluxes Have much Stronger Seasonality than Air-Sea Carbon Fluxes

- The magnitude of land carbon fluxes is about an order of magnitude higher than air-sea carbon fluxes.
- The land carbon fluxes have much stronger seasonality than ocean carbon fluxes.
- The Northern Hemisphere land is a carbon source in winter and sink in summer, and the opposite is true for the Southern Hemisphere land.

Fossil Fuel Emission has a Weaker Seasonality than Land Carbon Fluxes

- Most of the fossil fuel emissions are concentrated over east Asia, North America, Europe, and India.
- Fossil fuel emissions have much weaker seasonality than land carbon fluxes.

NASA ARSET - Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

The Relative Magnitude of Net Biosphere Exchange and Fossil fuel Emissions Depends on Locations

- Left panel: a grid point in China; Right panel: a grid point in North Africa.
- The annual mean fossil fuel emissions is much higher than land biosphere fluxes in China, while the fossil fuel emissions are negligible compared to land biosphere fluxes in Africa.
- You can make a similar plot for the locations and regions that you are interested.

Larger year-to-year variabilities in net land carbon fluxes

- Each color represents one specific year from 2015 to 2022.
- Negative numbers: carbon sinks; positive numbers: carbon sources.
- Land carbon fluxes have much larger year-to-year variability than ocean and fossil fuel emissions.
- The total carbon fluxes are the sum of land, ocean, and fossil fuel emissions, which represent the amount of carbon remaining in the atmosphere.
- The total carbon fluxes estimated from flux inversions agree with the CO2 growth rate observed by the NOAA Surface Observing Network.

Tropical Land Carbon Fluxes Dominate the Land Carbon Flux Year-to-year Variability

Annual carbon flux anomalies over land, tropical land, ocean, fossil fuel emissions, total fluxes, and NOAA observed CO2 from 2015 to 2022

- The color bar represents 2015 to 2022 from the left to the right.
- Annual carbon flux anomalies = annual carbon fluxes mean carbon fluxes between 2015-2022.
- 2015 and 2016 have much weaker net land carbon sink, reflected in the Figure as positive land carbon flux anomalies, which primarily come from the tropical land.
- Tropical land is defined as the land area between 25S and 25 N.
- Both ocean and fossil fuel emissions have very weak year to year variability. NASA ARSET – Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

Drought Over Tropical Land During 2015-2016 El Niño

- El Niño years cause changes in circulation patterns, which lead to drought over tropical land, especially over tropical South America and tropical Asia.
- In 2015, tropical South America and tropical Asia experienced severe drought, especially during Oct-Dec. 2015.
- Climatology mean is defined from 2015 to 2023.

Data source: <u>GPCP precipitation</u>

Drought Signal in both Atmospheric CO2 Concentration and Surface CO2 fluxes

- March 2016 and March 2015 ٠ CO2 concentration difference = lateral transport + $\int_{April 2015}^{March 2016} (flux)_{local}$
- Much larger CO2 increase (>4ppm) ٠ over the tropics that corresponds to net carbon sources over the tropical land.
- Lateral transport carries fossil fuel signal to the tropics.

total fluxes between (April 2015-March2016)

Annual CO2 increase becomes Weaker with the Ending of El Nino

- March 2017 and March 2016 • CO2 concentration difference = lateral transport + $\int_{April 2016}^{March 2017} (flux)_{local}$
- Much weaker CO2 increase (<2 ppm) • over the tropics, which corresponds to carbon sinks over the tropical land.
- Lateral transport carries the fossil fuel signal to the tropics, causing atmospheric CO2 concentration to continue increasing from 2016 to 2017 in spite of the local carbon sink.

Difference Between 2015/2016 El Nino and the Year Afterward

- Much larger CO2 increase over the tropics during El Nino than the year afterwards.
- Correspondingly, the tropical land is a much larger carbon source during EL Nino than the year afterwards.

diference of NBE between (April 2015-March2016) and (April 2016-March2017)

0.2

0

-0.2

diferences of air-sea fluxes between

Summary

275

- Interpretation of column CO2 concentration
- Global carbon cycle processes
- The link between surface carbon fluxes and atmospheric CO2 concentration
- Units for both fluxes and concentration and the conversions between the two
- Atmospheric CO2 flux inversion process
- Interpretation of surface carbon fluxes
- The impact of El Nino on atmospheric CO2 concentration and surface carbon fluxes
- References
- https://carbon2018.globalchange.gov/chapter/1/
- Liu *et al.* Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. *Science* 358, eaam 5690 (2017). DOI: <u>10.1126/science.aam 5690</u>
- Parazoo, N., et al. (2024). Antecedent conditions mitigate carbon loss during flash drought events. *Geophysical Research Letters*, 51, e2024GL108310. <u>https://doi.org/10.1029/2024GL108310</u>
- Jiang, X., Li, K.-F., Liang, M.-C., & Yung, Y. L. (2021). Impact of Amazonian fires on atmospheric CO₂. *Geophysical Research Letters*, 48, e2020GL091875. <u>https://doi.org/10.1029/2020GL091875</u>

Getting Started with OCO Data

Timeline of Available XCO2 Data

NASA ARSET – Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

All OCO-2 and OCO-3 are available through NASA's Goddard Earth Science Data and Information Service Center (GES DISC)

OCO-2 and OCO-3 data are stored at the <u>GES DISC</u>!

Be sure to register for a profile. It's free!

You can browse and look without a login, but you will need one to download data files.

You can always find the data or data collections by entering "OCO-2" or "OCO-3" in the search bar.

Same Name, Updated Version, and Now Cloud Accessible

Dataset 🖨		Source \$	Version 🖨	Time Res. \$	Spatial Res. 🖨	Process Level \$	Begin Date 🖨	End Date 🖨
	OCO-2 Level 2 bias-corrected XCO2 and other select fields from the full- physics retrieval aggregated as daily files, Retrospective processing V11.1r (OCO2 _L2_Lite_FP 11.1r)	0CO-2 0CO-2	11.1r	16 days	2.25 km x 1.29 km	2	2014-09-06	2024-04-01
Hover	Get Data							

OCO-2 LiteXCO₂ File Naming Convention:

Note: Latest version of OCO-2 Data is Version 11.

NASA ARSET – Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies

OCO-2/OCO-3 are Compliant with Open Science at NASA

аų,

The mission data are freely available. Please help support the missions and the continued availability of the data by citing its use!

To cite the data in publications:

OCO-2/OCO-3 Science Team, Vivienne Payne, Abhishek Chatterjee (2022), OCO-2 Level 2 bias-corrected XCO2 and other select fields from the full-physics retrieval aggregated as daily files, Retrospective processing V11.1r, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: **[Data Access Date]**, <u>10.5067/8E4VLCK16O6Q</u>

Jupyter Notebook Portion

- Before following along, you will need to download some software packages for this portion of the training.
- We will be working in Python 3, and Python and Jupyter notebook are packaged within Conda. Please follow the install directions listed for your operating system (Windows, Mac OS, Linux). <u>https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html</u>
- The libraries that you will need to use and import in the code below should be included in Conda.
- Please remember which directory you download your files, and we recommend creating a folder for the data.
- Jupyter Notebook Installation Guide (if you would prefer to just load this without Conda)
- From this list of websites, you can follow instructions to setup Jupyter Notebook:
 - <u>https://jupyter.org/install</u>
 - <u>https://www.geeksforgeeks.org/how-to-install-jupyter-notebook-in-windows/</u>
 - <u>https://test-jupyter.readthedocs.io/en/latest/install.html</u>

278

The libraries you need should be installed with Conda. To verify, open a terminal and type Conda List. Scroll to check that what you need is there. If not, do pip install.

			🛅 kyuen 1 — jupyter-notebook 🕨 python — 223×72	127 KR	Download	
Last login: Mon May 9 (base) kyuen@MT-200995	21:27:06 on ttys ~ % conda ls	s000			Download	Ŧ
CommandNotFoundError: Did you mean 'conda li	No command 'conda st'?	a ls'.				
<pre>(base) kyuen@MT-200995 # packages in environm # Name _ipyw_jlab_nb_ext_conf alabaster anaconda pacente plicet</pre>	<pre>i ~ % conda list eent at /Users/kyu Version 0.1.0 0.7.12 2021.11 100</pre>	uen/anaconda3: Build Channel py39hec8cb5_0 pyhd3eb1b0_0 py33_0 r200rec10r5_0		Anaconda Powershell Prompt (Anaconda3) (base) PS C:\Users\sagarl> pip install pandas numpy matplotlib xarray netCDF4 plotly_	-	
anaconda-navigator anaconda-project anyio appdirs applaunchservices appnope appscript	2.1.1 0.10.1 2.2.0 1.4.4 0.2.1 0.1.2 1.1.2	py39_0 pyhd3eb100_0 py39necd8cb5_1 pyhd3eb100_0 pyhd3eb100_0 py39ned8cb5_1001 py39ned2024_0				
argn argon2-cffi arrow asn1crypto astroid astropy async_generator	0.26.2 20.1.0 0.13.1 1.4.0 2.6.6 4.3.1 1.10	py39hecdaCo5_0 py39hecd2024_1 py39hecd2024_1 py_0 py39hecd2055_0 py39hecd2055_0 py39hf9932de_0 pyhd3eb1b0_0				
atomicwrites attrs autopep8 babel backcall backports backnorts functools in	1.4.0 21.2.0 1.5.7 2.9.1 0.2.0 1.0	py_0 pyhd3eb100_0 pyhd3eb100_0 pyhd3eb100_0 pyhd3eb100_0 pyhd3eb100_2 pyhd3eb100_0		A		
backports.shutil_get_t backports.tempfile backports.weakref basemap beautifulsoup4	erminal_size 1.0. 1.0 1.0.post1 1.2.2 4.10.0	pynaseube_0 0 pyhd3eb1b0_3 pyhd3eb1b0_1 py39h1ed8f73_2 anaconda pyh66c4308 0				
binaryornot bitarray bkcharts black	0.4.4 2.3.0 0.2 19.10b0	pyhd3eb1b0_1 py39h9ed2024_1 py39hecd8cb5_0 py_0				
blas bleach	1.0	mkl pvhd3eb1b0_0				

Final Step

To open Jupyter notebook, simply type Jupyter notebook in the terminal prompt and it will open up a new notebook in your chosen browser.

Last login: Mon May 9 21:29:44 on ttys001 (base) kyuen@MT-200995 ~ % jupyter notebook

- [I 2022-05-12 19:39:01.808 LabApp] JupyterLab extension loaded from /Users/kyuen/anaconda3/lib/python3.9/site-packages/jupyterLab
- [I 2022-05-12 19:39:01.808 LabApp] JupyterLab application directory is /Users/kyuen/anaconda3/share/jupyter/lab
- [I 19:39:01.813 NotebookApp] The port 8888 is already in use, trying another port.
- [I 19:39:01.813 NotebookApp] The port 8889 is already in use, trying another port.
- [I 19:39:01.814 NotebookApp] Serving notebooks from local directory: /Users/kyuen 1
- [I 19:39:01.814 NotebookApp] Jupyter Notebook 6.4.5 is running at:
- [I 19:39:01.814 NotebookApp] http://localhost:8890/?token=8d904a1bab00dd06d19f4c44d22cae9bd1cc91121be9e98b
- [I 19:39:01.814 NotebookApp] or http://127.0.0.1:8890/?token=8d904a1bab00dd06d19f4c44d22cae9bd1cc91121be9e98b
- [I 19:39:01.814 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
- [C 19:39:01.818 NotebookApp]

To access the notebook, open this file in a browser:

file:///Users/kyuen%201/Library/Jupyter/runtime/nbserver-29346-open.html

In []:			
1			

Trusted / Python 3 (ipykernel) O

Jupyter Notebook Demonstration

Part 2: Summary

Summary

- Interpret column CO2 spatial and temporal distributions.
- The factors that contribute to the change in local and global atmospheric CO2 concentration
- The units of atmospheric CO2 concentration and surface carbon fluxes
- The link between surface carbon fluxes and atmospheric CO2 concentration
- Atmospheric CO2 flux inversion process
- Interpret spatial and temporal distributions of surface carbon fluxes
- Interpret drought signals in both OCO-2 CO2 concentration and inferred fluxes

• Data sources:

- CO2 concentration
 - <u>OCO-2 V11</u>
- Carbon Fluxes
 - <u>CMS-Flux posterior NBE</u>
 - <u>CMS-Flux posterior air-sea fluxes</u>
 - Fossil fuel emissions
 - <u>CMS-Flux NBE prior fluxes</u>
- Other data source
 - OCO-2 MIP Fluxes
 - US GHG Center country carbon stock change

References:

References

аų,

- Crisp, D., et al. 10, 59–81, <u>https://doi.org/10.5194/amt-10-59-2017</u>, 2017.
- Liu, J. et al 2017 Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Nino Science 358 eaam5690
- Liu, J., et al. Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020), Earth Syst. Sci. Data, 13, 299–330, <u>https://doi.org/10.5194/essd-13-299-2021</u>, 2021.
- A. Chatterjee et al. Influence of El Niño on atmospheric CO₂ over the tropical Pacific Ocean: Findings from NASA's OCO-2 mission.Science358,eaam5776(2017).DOI:<u>10.1126/science.aam5</u>

Contact

- Guest Instructors:
 - Junjie Liu: junjie.liu@jpl.nasa.gov
 - Karen Yuen: <u>karen.yuen@jpl.nasa.gov</u>
 - David Moroni: <u>david.f.moroni@jpl.nasa.gov</u>
- ARSET Instructor:
 - Erika Podest: <u>erika.podest@jpl.nasa.gov</u>
- Webinar Webpage:
 - <u>https://appliedsciences.nasa.gov/get-</u> <u>involved/training/english/arset-aplicaciones-de-</u> <u>mediciones-de-dioxido-de-carbono-para-estudios</u>
- ARSET Webpage:
- <u>https://appliedsciences.nasa.gov/arset</u>
- Twitter: <u>@NASAARSET</u>

3rd Session

CO2 Measurements over a Large Urban Area

- Recognize the importance and challenges of measuring carbon dioxide over metropolitan areas.
- Identify important aspects of space-based CO2 measurements over urban areas.
- Access, subset, and download multi-year OCO-3 SAM data using a provided Jupyter notebook.
- Visualize OCO-3 SAM data over urban areas and perform an interpretative and comparative analysis.

Thank You!

NASA ARSET – Measuring Atmospheric Carbon Dioxide from Space in Support of Climate Related Studies