

Transformar Datos de Observación de la Tierra en Conjuntos de Datos de Infraestructura Construida para la Modelación del Riesgo de Desastres

2^{da} Parte: Desarrollo de Datos de Exposición para Sitios Específicos con Observaciones de la Tierra

Greg Yetman (CIESIN, Columbia University), Juan Martinez (CIESIN, Columbia University) Taylor Hauser (Oak Ridge National Laboratory [ORNL]), Amy Rose (ORNL), Philipe Ambrozio Dias (ORNL) & Carolynne Hultquist (University of Canterbury)

5 de octubre de 2023

Transformar Datos de Observación de la Tierra en Conjuntos de Datos de Infraestructura Construida para la Modelación del Riesgo de Desastres

Resumen General

¿Por Qué es Importante la Evaluación de Riesgos Climáticos?

- Aun con una reducción drástica de las emisiones de carbono, los impactos a corto y mediano plazo son inevitables.
- Los impactos y riesgos del cambio climático son cada vez más complejos y difíciles de gestionar (IPCC AR6, 2022).
- Los impactos del cambio climático en la infraestructura humana no se comprenden bien y varían drásticamente según la ubicación.
- Comprender los riesgos específicos de las comunidades al cambio climático es fundamental para evaluar las estrategias de adaptación.

"No puedes detener las olas, pero puedes aprender a surfear." - Jon Kabat-Zinn

Fuente: Scott Pena

Esquema de la Capacitación

1ra Parte

Desarrollo de Datos de Exposición Regionales con Observaciones de la Tierra

3 de octubre de 2023 14h a 16h Hora Este de EE.UU. (UTC-4)

2^{da} Parte

Desarrollo de Datos de Exposición para Sitios Específicos con Observaciones de la Tierra

5 de octubre de 2023 14h a 16h Hora Este de EE.UU. (UTC-4)

3ra Parte

Evaluación de la Utilidad y Comunicación de la Incertidumbre

10 de octubre de 2023 14h a 16h Hora Este de EE.UU. (UTC-4)

Tarea

Abre el 10 de octubre – Fecha límite: 24 de octubre – Publicada en la página web de la capacitación

Se otorgará un **certificado de finalización de curso** a quienes asistan a todas las sesiones en vivo y completen la tarea asignada antes de la fecha estipulada.

Prerrequisitos

m

- Fundamentos de la Percepción Remota (Teledetección)
- Conceptos Básicos de SIG y Bases de Datos
- Estadística y Muestreo a un Nivel Básico

Cómo Hacer Preguntas

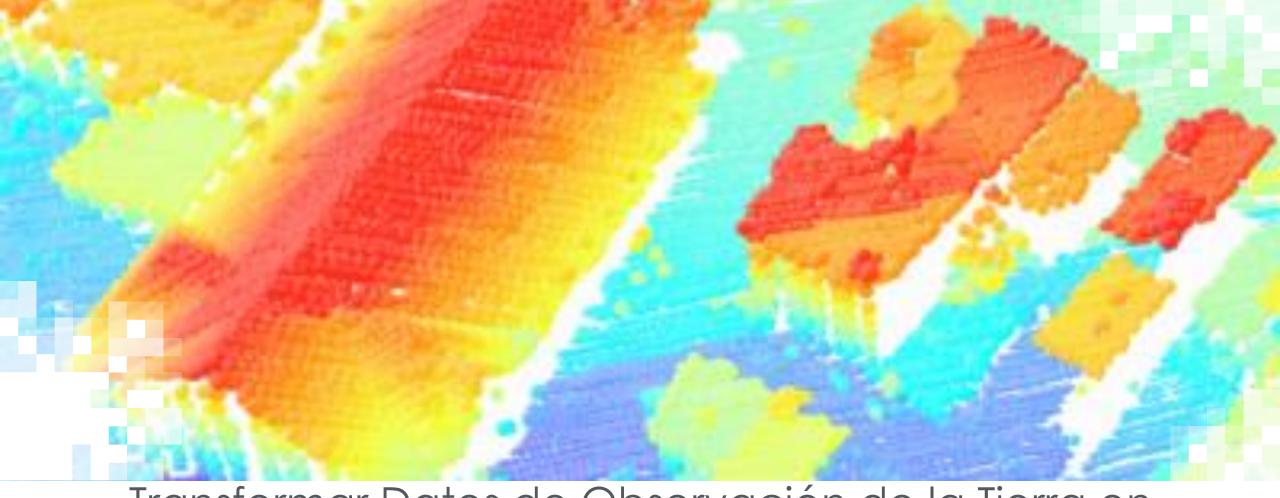
- Por favor escriba sus preguntas en la casilla denominada "Questions" y las responderemos al final de este webinar.
- No dude en escribir sus preguntas mientras vayamos avanzando. Intentaremos responder todas las preguntas durante la sesión para preguntas y respuestas después del webinar.
- Las demás preguntas las responderemos en el documento de preguntas y respuestas, el cual será publicado en la página web de la capacitación aproximadamente una semana después de esta.

2^{da} Parte – Formadores

Philipe Dias

R&D Associate in Computer Vision and Machine Learning

Geospatial Science and Human Security Division (GSHSD) / GeoAl group



Juan Martinez

Analista SIG
CIESIN, Columbia University

Transformar Datos de Observación de la Tierra en Conjuntos de Datos de Infraestructura Construida para la Modelación del Riesgo de Desastres

Desarrollo de un Conjunto de Datos de Exposición a Nivel de Edificio para HAZUS

2^{da} Parte – Objetivos

Al final de la 2^{da} parte, las/los participantes habrán desarrollado la capacidad para:

- Comprender las técnicas para atribuir datos de infraestructura
- Identificar problemas en la transferencia de atributos debido a cuestiones de ubicación espacial
- Seleccionar estrategias para transferir atributos
- Identificar fuentes comunes de datos de infraestructura y huella de edificios

Desarrollo de un Conjunto de Datos de Exposición a Nivel de Edificio para HAZUS

- 77
- Octubre de 2012: El estado de Nueva York y las áreas circundantes fueron azotados por la Supertormenta Sandy.
- Preguntas después de la tormenta:
 - ¿Estábamos preparados?
 - ¿Qué podríamos hacer de manera diferente?
 - ¿Qué datos se necesitan para la próxima tormenta?
- La evaluación del riesgo requiere más que la ubicación y población de los edificios.


Repaso de Conocimiento Previamente Adquirido

m

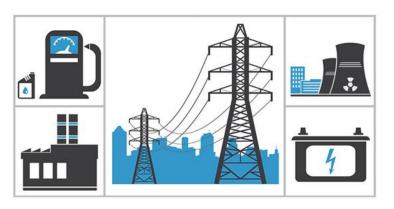
- Los Sistemas de Información
 Geográfica (SIG) admiten consultas
 espaciales y de atributos.
- Los datos SIG vectoriales se comprenden tres tipos fundamentales:
 - Puntos: Objetos adimensionales
 - Líneas: Objetos unidimensionales
 - Polígonos: Objetos bidimensionales
- La superposición espacial permite combinar capas diferentes al computar relaciones geométricas.
 - ¿Cuáles edificios caen dentro de cuales parcelas fiscales?

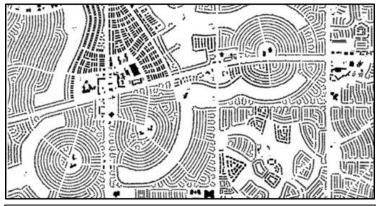
Punto: par de coordenadas x,y

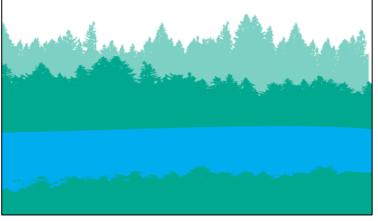
Línea: serie ordenada de pares de coordenadas x,y

Polígono: serie cerrada de pares de coordenadas x,y

CountyName	Rockland
MuniName	Orangetown
Source	Rockland County GIS Division
SourceID	
SourceDate	2007
RoofType	0
InfrType	
OccClass	EDU2






Análisis de Inundaciones: HAZUS

Hazards US (HAZUS) puede estimar impactos de inundaciones en SIG en base a los datos de insumo:

- Profundidad de inundación
- Información de datos de edificios
 - Valor
 - Clase de ocupación (residencial, industrial, comercial, mixta, institucional)
 - Se desglosa aún más, p. ej., RES-4)
 - Elevación de la inundación del suelo (punto de entrada más bajo para el agua)
 - Infraestructura crítica

Recopilación de una Base de Datos de Huella de Construcción

Para Todo el Estado

Integración de huellas de edificios de múltiples fuentes

- Bases de datos municipales (ciudad/municipio/condado)
- Huellos de edificios de Microsoft
- Huellas extraídas de datos LiDAR utilizando métodos automatizados
- Digitalización manual a partir de imágenes de edificios

m

- La infraestructura crítica se recopiló a partir de fuentes estatales y <u>federales</u>.
 - Los datos de ubicación de puntos críticos de infraestructura se unieron a las huellas de edificios por ubicación (polígono más cercano)
 - Los datos fueron validados a través de inspecciones visuales y búsquedas en la web
- Modelo de datos modificado para manejar servicios coubicados en edificios individuales; por ejemplo, bomberos y policías en la misma estructura

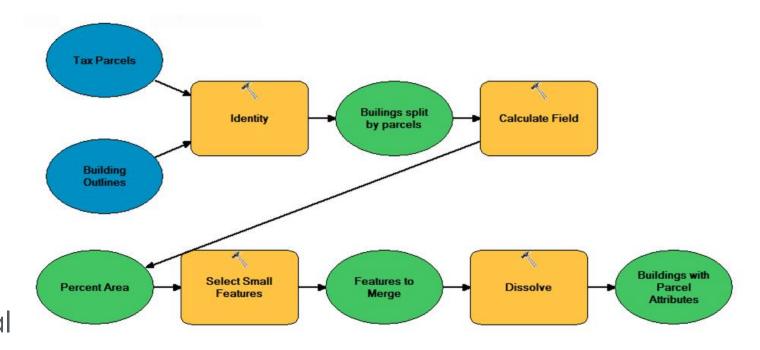
Instalaciones de infraestructura crítica incluyen:

- Colegio o Universidad
- Estación EMS*
- Centro de Operaciones de Emergencia
- Estación de bomberos
- Hospital
- Asilo
- Lugar de culto
- Central eléctrica
- Escuela
- Instalación de aguas residuales

^{*} EMS- "Servicios Médicos de Emergencia" por sus siglas en inglés

m

- El valor tasado del edificio, la clase de ocupación y el año de construcción se obtuvieron de una base de datos de parcelas fiscales a nivel estatal.
- Muchas parcelas fiscales contenían varios edificios.
 - Valor dividido entre edificios por área de huella
- Muchos edificios cruzaron los límites de las parcelas fiscales.
 - Los edificios fueron divididos por parcelas fiscales
 - Si solo un pequeño porcentaje del área cayó en un lado del límite de la parcela fiscal, la pequeña porción se mantuvo con el límite fiscal más grande.

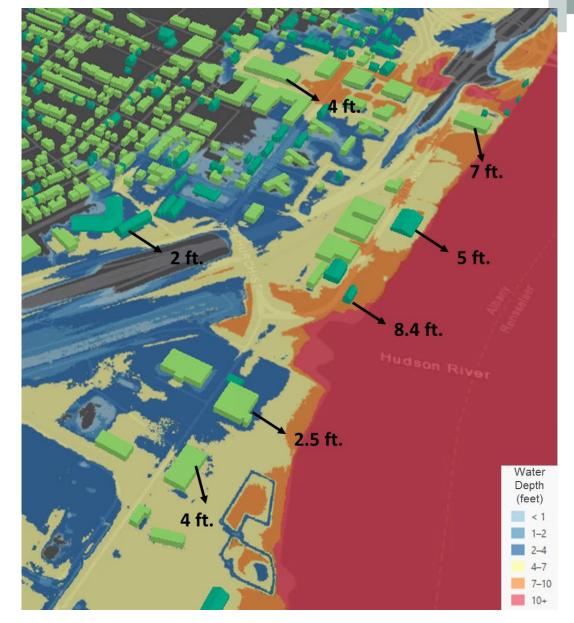


Cómo hacer con edificios que están divididos entre varias parcelas:

- Dividir por parcela
- 2. Calcular el área porcentual respecto a la huella total del edificio original
- 3. Seleccionar/marcar características para volver a fusionar con el atributo original
- 4. Disolver selección

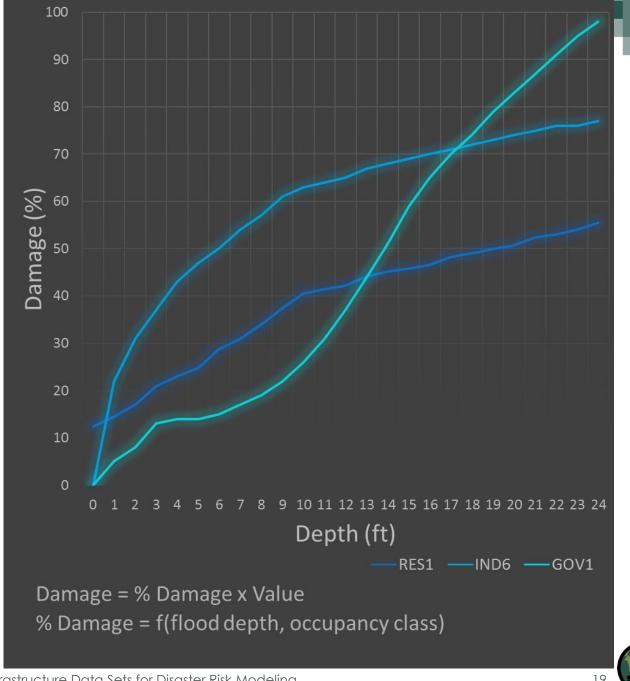
m

- Muchas parcelas tienen polígonos "apilados": unidades verticales como condominios o cooperativas donde cada inundación tiene múltiples unidades con evaluaciones separadas.
- Estos fueron sumados (valor) y asignados a la huella del edificio en el lote.
- Se tuvieron que crear categorías de uso mixto para algunos edificios.
 - P.ej., edificios con espacio comercial en la planta baja y residencias en los pisos superiores


- La elevación de la planta baja generalmente no estaba disponible en los datos de huella del edificio o parcelas fiscales.
- El atributo "año construido" de las parcelas fiscales se utilizó para imputar la elevación de la planta baja.
 - Los códigos de construcción especifican una planta baja mínima; Estos han cambiado a lo largo de los años.
 - El año de construcción se utilizó para buscar la elevación mínima del código de construcción relevante.

Evaluación de Impactos

- Adjuntar información crítica de infraestructura y paquetes fiscales a las huellas del edificio.
- Asignar un valor de profundidad de inundación a cada huella de edificio desde la superficie de inundación.
 - FEMA DFIRMS para inundaciones fluviales
 - Profundidades de inundación modeladas del Stevens Institute para zonas costeras
- La profundidad de inundación, ocupación, elevación del primer piso y el valor son variables clave.



Evaluación de Impactos

Una vez recopilados todos los datos, se produce una evaluación exhaustiva y detallada del impacto de las inundaciones.

- Curvas de daños basadas en evaluaciones de impactos después de las tormentas de todo Estados Unidos (HAZUS)
- Las estimaciones de daños a nivel de edificio (en \$USD) se agregaron a las unidades municipales
- Categoría de daños a nivel de edificio aplicada por edificio (leve, moderado, significativo, destruido)

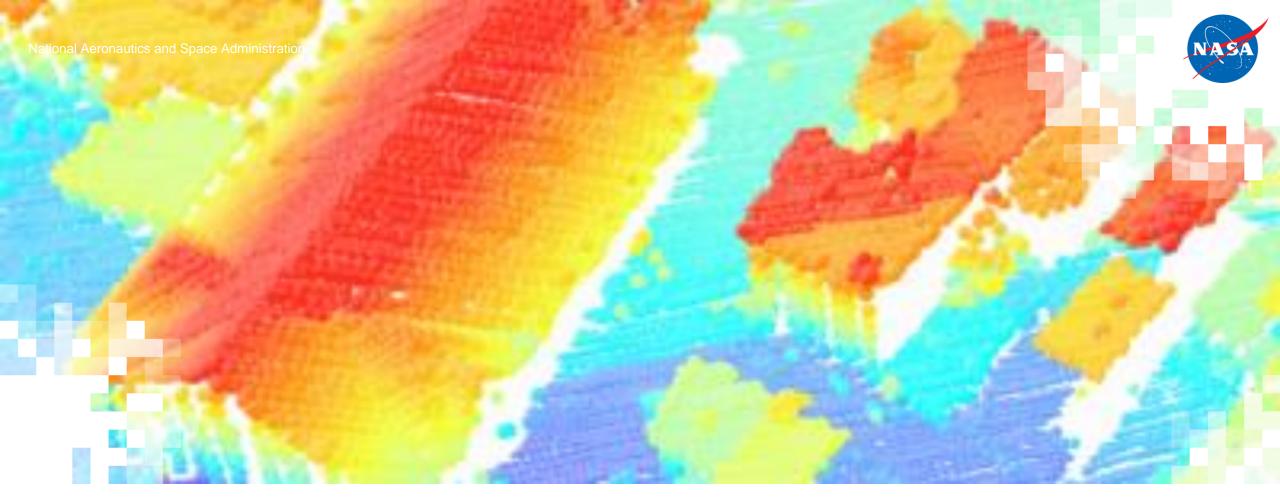
Evaluación de Impactos

- Las estadísticas a nivel municipal se resumieron a partir del análisis a nivel de edificio.
- Los edificios individuales se clasificaron en categorías de daños para inundaciones que ocurren cada 100 y 500 años (eventos de probabilidad del 1% y 0,2%).
 - Ninguno
 - Leve
 - Moderado
 - Substancial

Recomendaciones para edificios residenciales categorizados como sustanciales:

(1) Obtener un seguro contra inundaciones (2) Elevar el horno, el calentador de agua y el panel eléctrico (3) Instalar "válvulas de retención" (4) Incorporar aberturas de inundación debajo de BFE y asegurar materiales de construcción

County	Municipality	Return Period (years)	Building and Contents loss (\$)	Number of buildings damaged
Dutchess	Fishkill	100	3,803,235	93
Dutchess	Fishkill	500	9,679,156	367
Dutchess	Pleasant Valley	100	1,590,441	93
Dutchess	Pleasant Valley	500	10,912,804	276



Resultados

- Las huellas de los edificios están disponibles para descargar.
- Los datos de inundaciones y huells de edificios se pueden visualizar en línea.

Transformar Datos de Observación de la Tierra en Conjuntos de Datos de Infraestructura Construida

Taylor Hauser | Geospatial Data Analyst | Built Environment Characterization Group

Traducción: Philipe Dias | R&D Associate in Computer Vision & Machine Learning | GeoAl group

Oak Ridge National Laboratory

Esquema

m

- Proyecto USA Structures
 - Antecedentes y Motivación
 - Flujo de trabajo
 - De imágenes a polígonos
 - De polígonos a estruturas con atribuciones

Antecedentes y Motivación

- En 2016, en EE. UU. fueran registrados 32 grandes desastres y seis declaraciones de emergencia relacionadas con inundaciones.
- La preparación, respuesta y mitigación de emergencias se han visto obstaculizadas por la falta de datos precisos y actualizados sobre la ubicación y elevación precisas de los edificios.
- Solución:
 - Construir y mantener el primer inventario completo del país (EE. UU.) de todas las estructuras de más de 450 pies cuadrados.

Contribuidores al Proyecto USA Structures 2017-Presente

m

- Mark Tuttle
- Melanie Laverdiere
- Lexie Yang
- Taylor Hauser
- Jacob Mckee
- Jessica Moehl
- Bennett Morris
- Joe Pyle

- Ben Swan
- Matthew Whitehead
- Andrew Reith
- Matthew Crockett
- Erik Schmidt
- Daniel Adams
- Darrell Roddy

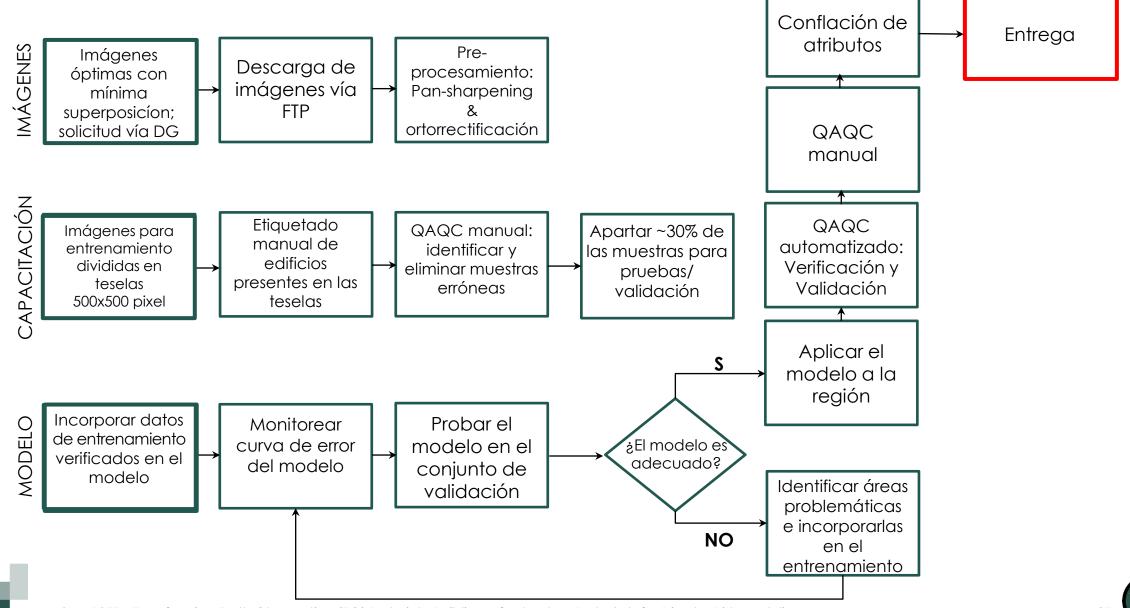
Progreso hasta la fecha (Sept 2017 – Agosto 2023)

Completas: Fases I & II

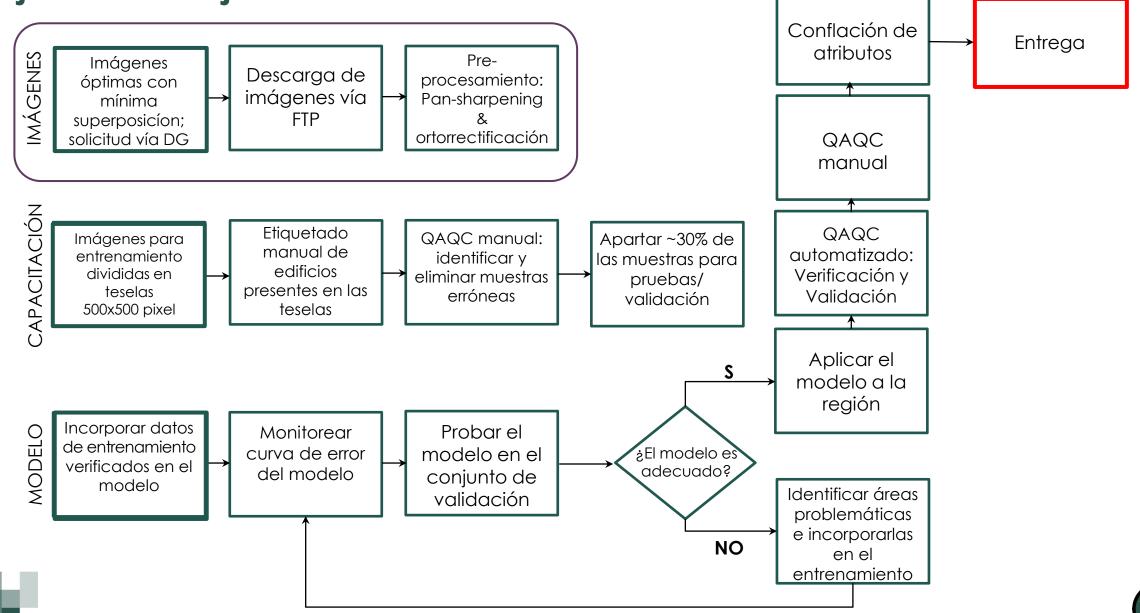
Cantidad de estructuras

Texas	10,466,143		
Louisiana	1,859,228		
Arkansas	2,489,884		
Missouri	1,527,560		
Oklahoma	2,323,936		
Arizona	2,724,064		
New Mexico	986,505		
Alabama	2,489,884		
Mississippi	1,527,560		
Guam	42,663		
Hawaii	327,070		
Puerto Rico	1,142,054		
Georgia	3,757,825		
South Carolina	2,286,581		
Florida	6,645,067		
North Carolina	4,650,575		
Illinois	4,639,278		
Indiana	3,287,119		
Kentucky	2,418,871		
Ohio	5,496,516		

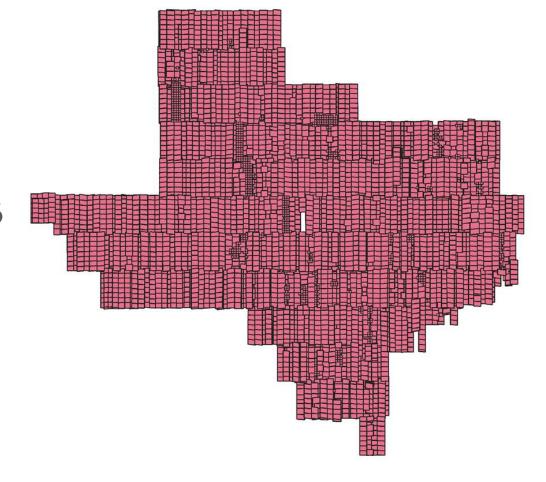
Massachusetts	2,057,472		
New Hampshire	558,369		
New Jersey	2,467,395		
New York	4,847,135		
Pennsylvania	4,837,949		
Rhode Island	353,194		
Vermont	357,733		
Virginia	3,124,376		
West Virginia	1,072,955		
Oregon	1,658,885		
lowa	2,114,520		
Michigan	4,782,958		
Minnesota	2,801,654		
Wisconsin	3,039,604		
Virgin Islands	40,726		
Kansas	1,600,218		
Nebraska	1,178,532		
North Dakota	572,242		
South Dakota	628,750		
Virgin Islands	40,726		


Total hasta la fecha:	125,583,725	
Alaska	295,307	
Wyoming	385,465	
Utah	1,101,597	
Montana	767,753	
Colorado	2,174,948	
Northern Mariana Is.	12,572	
American Samoa	13,412	
Maryland	1,658,164	
Maine	761,802	
Delaware	371,915	
District of Columbia	58,061	
Connecticut	1,131,222	
Oregon	1,658,885	
Washington	2,780,681	
Idaho	853,335	
Nevada	837,251	
California	9,946,076	
Tennessee	3,122,388	

Datos disponibles de los archivos públicos de la FEMA en Geoplatform:


https://disasters.geoplatform.gov/publicdata/Partners/ORNL/USA_Structures/

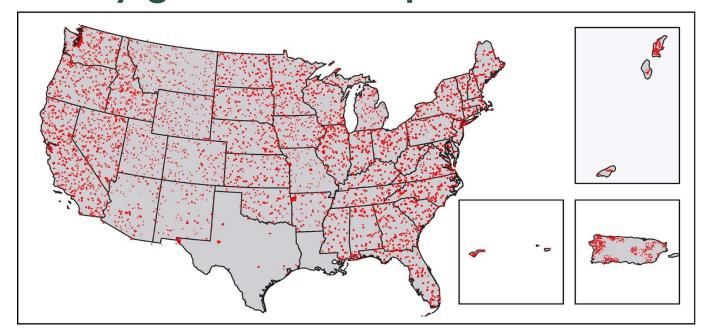
Flujo de Trabajo Generalizado

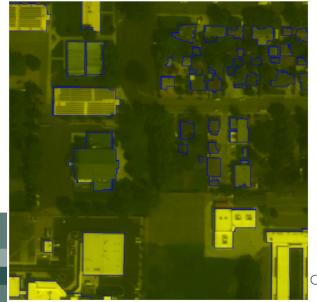

Flujo de Trabajo Generalizado

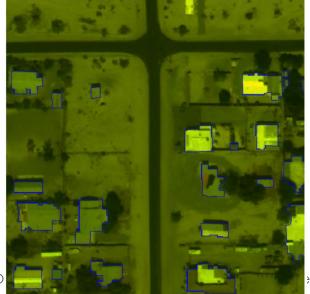
Ejemplo de Volumen de Datos

m

- Texas
- 4862 Imágenes
- 3.7 TB
- Pan-sharpened 44 TB

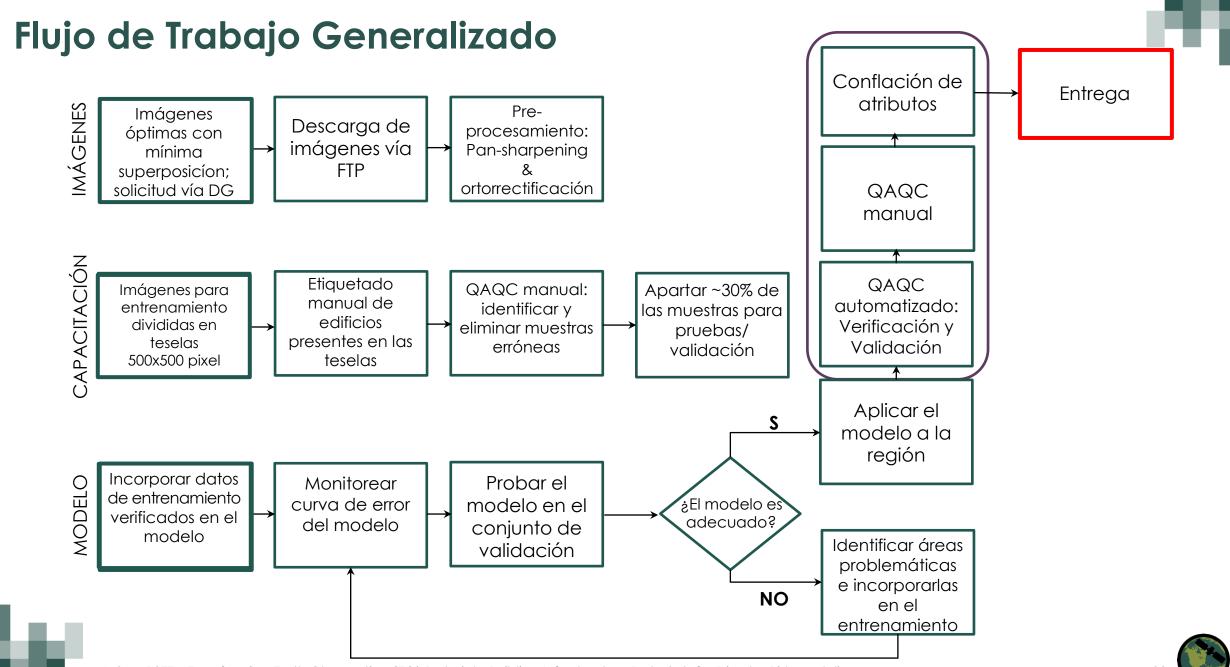



Flujo de Trabajo Generalizado Conflación de Entrega atributos MÁGENES Pre-Imágenes Descarga de procesamiento: óptimas con imágenes vía Pan-sharpening mínima FTP superposicion; ortorrectificación **QAQC** solicitud vía DG manual APACITACIÓN Etiquetado QAQC QAQC manual: Imágenes para Apartar ~30% de manual de automatizado: entrenamiento identificar y las muestras para edificios divididas en Verificación y eliminar muestras pruebas/ presentes en las teselas erróneas Validación validación 500x500 pixel teselas Aplicar el modelo a la región Incorporar datos Probar el Monitorear MODELO de entrenamiento ¿El modelo es modelo en el curva de error verificados en el adecuado? del modelo conjunto de modelo Identificar áreas validación problemáticas e incorporarlas NO en el entrenamiento


Desarrollo de un modelo robusto y generalizable para EE.UU.

59.000+ muestras de entrenamiento creadas manualmente:

- 25.500 muestras positivas
- 33.500 muestras negativas (ninguna edificación presente - ayuda a limitar las detecciones positivas falsas)

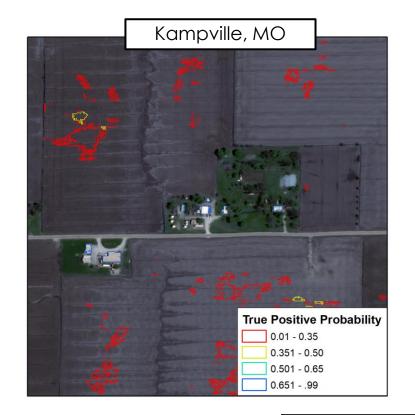


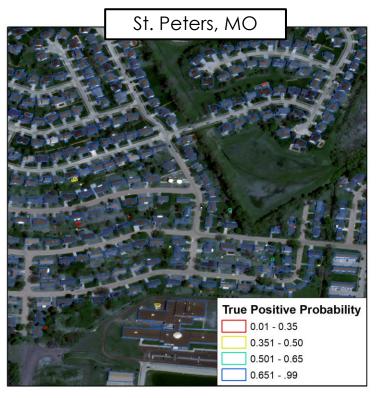
Washington

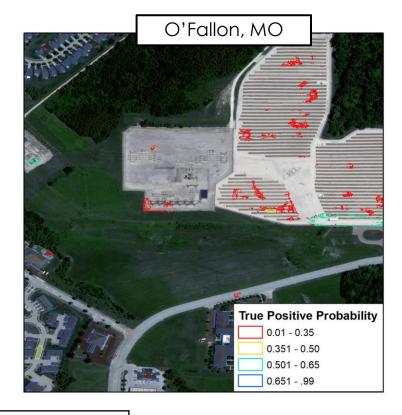
Florida

Pennsylvania

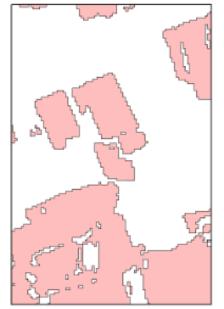
Colorado

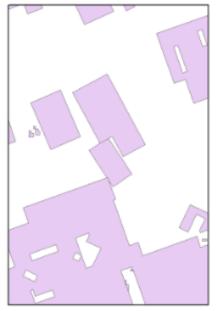

Modelo de Verificación y Validación (VVM)




- Un modelo de aseguramiento de calidad y control de calidad (QA/QC)
 - Proyectado para evaluar las detecciones de estructuras vectorizadas (edificaciones)
 - Identificar y eliminar Error de Tipo I (Falso Positivo)
- Ensamble de Clasificación Binaria Supervisada
 - Gradient Boosted Decision Tree

Resultados del VVM




Resultados por muestras:					
$\Delta()$		Exactitud (Accuracy)			
Kampville, MO	1.096	1.097	99,91%		
St. Peters, MO	319	319	100,00%		
O'Fallon, MO	718	720	99,72%		

Regularización

- Beneficios
 - Elimina vértices no incidentes
 - Mejora la velocidad de renderización en software SIG
 - Reduce significativamente los requisitos de almacenamiento
 - Convierte las detecciones en formas más familiares
- Desventajas
 - Computacionalmente costoso
 - Puede causar problemas difíciles de encontrar
 - Otro más algoritmo entre las imágenes y el resultado final

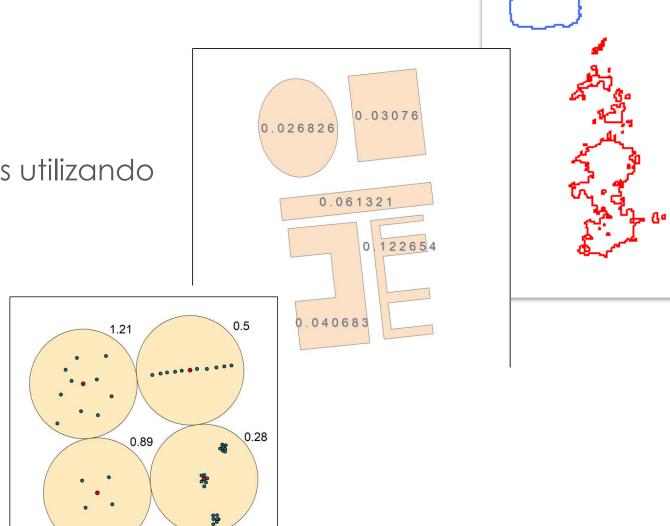
Clasificación de Destino/Uso – Flujo de trabajo generalizado

Etiquetar
 estructuras
 que
 intersecan
 con capas de
 HIFLD

Census HU o Lightbox Parcels Estructuras restantes se etiquetan con datos del Censo o de las Parcelas

ResType

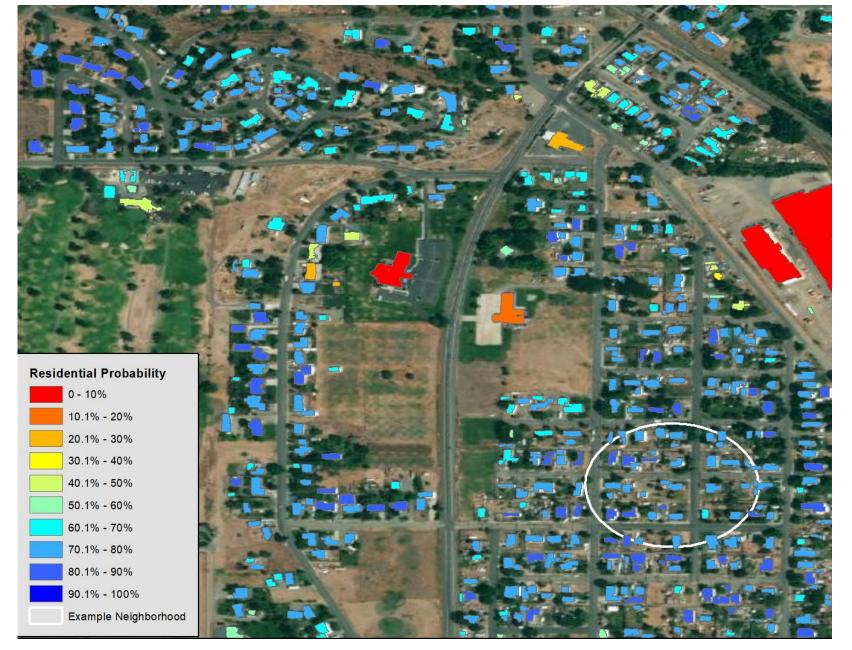
 Completar espacios vacíos de estructuras no etiquetadas con ResType


Clases de destino/uso

- Residencial
- Comercial
- Industrial
- Agricultura
- Reuniones
- Sin fines de lucro
- Gobierno
- Educacional
- Servicios y Misceláneas
- No clasificadas

GAUNTLET - Herramienta para Calcular Morfologías de Edificaciones

- Geométricas
 - Medidas de Geometría
- Ingeniadas
 - Medidas complejas generadas utilizando características geométricas
- Contextuales
 - Patrones Espaciales de Puntos
 - Relaciones de Escalas


Modelo ResType

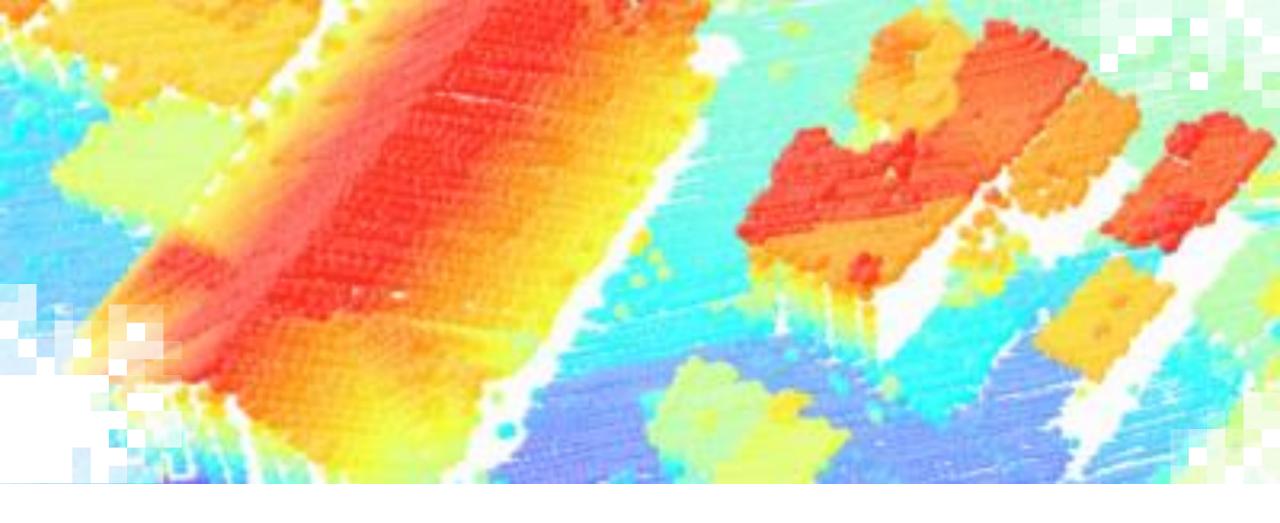
m

- Clasificación binaria del uso de edificios
 - Residencial
 - No Residencial
- Analiza morfologías de edificaciones (descriptores Gauntlet)
- Para llenar vacíos de datos
- Entrenado con etiquetas de datos de parcelas



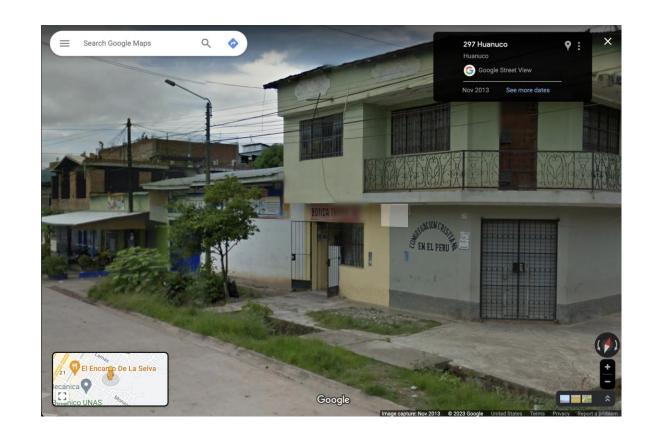
Resultados

Uniendo los Modelos


- Procesamiento de imágenes
- CNN: detección de estructuras
- VVM
- Regularización
- Flujo de atribuición
 - 60+ datasets combinados
 - Gauntlet
 - ResType

¡Gracias!

Taylor Hauser hausertr@ornl.gov


Traduccion:
Philipe Dias
ambroziodiap@ornl.gov

Muestreo de Google StreetView para Caracterizar la Vulnerabilidad

Muestreo de Google StreetView para Caracterizar la Vulnerabilidad

- Para áreas sin inventarios detallados de infraestructura, ¿podemos estimar la vulnerabilidad a través del muestreo?
- Usando categorías amplias de la clasificación de sensores remotos (núcleo urbano, áreas industriales, áreas residenciales), podemos muestrear ubicaciones en StreetView para evaluar la vulnerabilidad.

Objetivos de Aprendizaje para Esta Capacitación

Al final de esta capacitación las/los participantes habrán desarrollado la capacidad para:

- Comprender las técnicas para generar un muestreo geográfica aleatorio
- Construir un estudio de los componentes geográficos

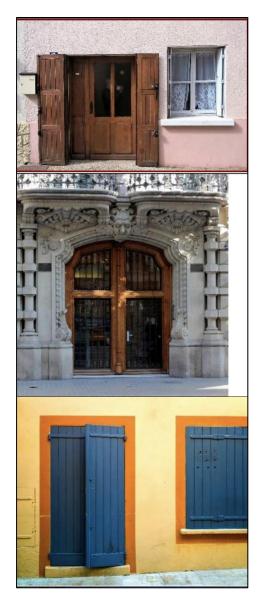
Estimación de Características de Edificios conGoogle StreetView

- Las estimaciones de las vulnerabilidades de los edificios basadas en áreas son relevantes para la planificación para desastres y los ejercicios de alcance (se decide dónde recopilar más datos).
- Se puede utilizar una muestra aleatoria de áreas urbanas para estimar la prevalencia de vulnerabilidades y caracterizar diferentes categorías de uso del suelo.

Metodología

- 1. Diseño de estudios
- 2. Seleccionar sitios de muestreo
- 3. Configuración de Mechanical Turk
- 4. Recopilación y análisis de datos

Diseño de Estudios


- Definir variables
- Estandarizar a través del libro de códigos
- Desarrollar un script de tareas de plantilla de variables del estudio

Variable	Opciones de Entrada
Material de construcción	Mampostería, bloque de cemento, madera, ladrillo, acero
Tipo de techo	Metal corrugado, tejas, paja u hojas de palma, alquitrán, grava, hormigón, mixtas
Tipo de calle	Asfalto, adoquines o cemento, tierra o grava, baches
Uso del suelo	Residencial, Comercial, Natural, Agrícola, Mixto
Tipo de estructura	Separado, pareado, adjunto, no aplicable
Estado de ocupación	Ocupado, vacante, no se puede determinar la ocupación
Altura fija (punto de entrada más bajo)	Nivel del suelo, bajo (1-6"), medio (7-12"), alto (12-18")
Estado del edificio	Muy pobre, pobre, regular, bueno con defectos menores, muy bueno
Topografía de la calle	Pendiente plana o baja, pendiente media, pendiente pronunciada
Pisos	Número de plantas
Desagües	Número de desagües (calle)

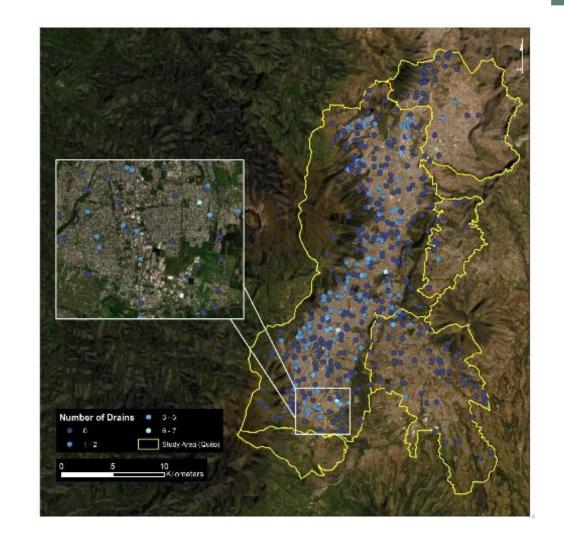
Selección de Sitios de Muestreo

- Crear puntos aleatorios dentro del área urbana.
- Localizar los edificios cerca de los puntos (puntos de caída si no hay edificios presentes).
- Asegurarse de que los edificios estén incluidos en Google StreetView.

Configurar Mechanical Turk

Mechanical Turk es un sistema basado en tareas para trabajos repetitivos, como revisar imágenes u otros datos.

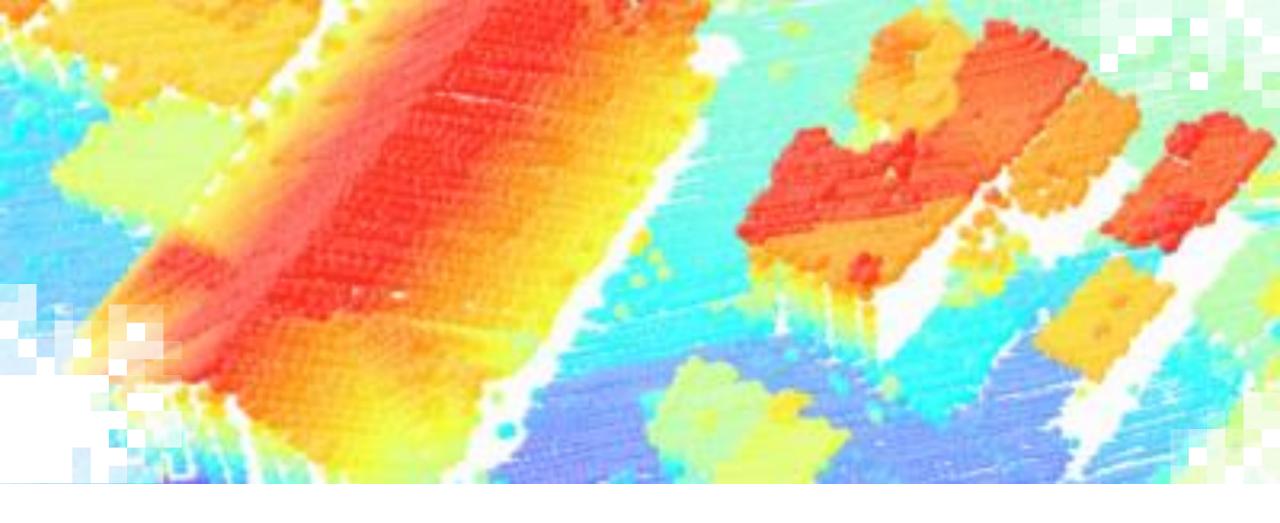
- Exportar imágenes ópticas de teledetección para cada punto y cargar en una carpeta accesible en la web(p.ej., Un "balde" de Amazon Web Services).
- Instalar <u>Mechanical Turk</u> en una máquina local.
 - Alternativa: usar <u>un servicio</u> <u>pagado de Amazon</u>.
- Ejecutar el módulo con un script de tareas de plantilla.



Building / Structure Information		
Select a Sill Height		
○ None, Ground Level ○ Low, 1-6" ○ Medium, 7-12" ○ High, 12-18" ○ Not Applicable		
☐ Detached ☐ Semi-detached ☐ Attached ☐ Not Applicable		
1 Number of Floors		
Building Condition, Status and Material		
○ Very Poor ○ Poor ○ Fair ○ Good with Minor Defects ○ Very Good		
☐ Under Construction ☐ Masonry or Cinder Block ☐ Wood Construction ☐ Brick ☐ Steel		
○ Occupied ○ Vacant ○ Cannot determine occupancy		
Roof Type		
□ Corrugated Metal □ Tile □ Thatched or Palm Leaves □ Tar □ Gravel □ Other: Additional Notes		
Land Use		
□ Residential □ Commercial □ Agricultural □ Industrial □ Natural □ Other:		
Street Information		
○ Flat or Low Slope ○ Medium Slope ○ Steep Slope		
Number of Drains Visible		
□ Paved Street (Asphalt) □ Cobble or Cement Blocks □ Dirt or Gravel □ Potholes □ Other: Additional Notes		
Add any notes here		
☐ Google StreetView Not Available		
Submit		

Recolección y Análisis de Datos

- Usar Mechanical Turk para recolectar datos para cada ubicación.
- Evaluar los datos recolectados para cada variable.
 - Revisar la coherencia entre analistas.
- Visualizar los resultados en contexto.


Resultados y Conclusiones

- Las variables de vulnerabilidad a inundaciones para cientos de edificios se pueden recopilar en solo unas cuantas horas.
- Debe medirse la incertidumbre de las salidas.
 - Es fácil que diferentes analistas interpreten las instrucciones de manera diferente; Los ejemplos son útiles
 - No siempre es consistente entre analistas

Variable	Kappa (<i>κ</i>)
Material de construcción	0.94
Tipo de techo	0.83
Tipo de calle	0.87
Uso de la tierra	0.88
Tipo de estructura	0.64
Estado de ocupación	0.80
Altura del umbral	0.66
Estado del edificio	0.54
Topografía de calles	0.79

2^{da} Parte:

Resumen

Resumen

- ¿Desarrollo de un conjunto de datos de exposición a nivel de edificio para el estudio HAZUS Flood Study en Nueva York
- Uso de Observaciones de la Tierra para desarrollar un conjunto de datos de estructuras construidas
- Estudio de caso: Muestreo desde streetview para caracterizar la vulnerabilidad

Mirando Hacia Adelante

- ^{3ra} Parte: Evaluación de la Utilidad y Comunicación de la Incertidumbre
 - Mejores prácticas respecto a datos de exposición
 - Cómo desarrollar y entender metadatos
 - Consideraciones sobre equidad y sesgos
 - Estudio de caso: Evaluación de impactos del cambio climático con datos de exposición de construcciones en Antigua y Barbuda

Datos de Contacto

Formadores:

- Juan Martinez
 - <u>jmartine@ciesin.columbia.edu</u>
- Philipe Dias
 - ambroziodiap@ornl.gov

- Página Web de ARSET
- ¡Síganos en Twitter!
 - @NASAARSET
- ARSET en YouTube

Visite Nuestros Programas Hermanos:

- DEVELOP
- SERVIR

Recursos

m

- <u>Datos de huellas de edificios</u> y <u>Mapeador</u> del Estado de Nueva York
- Mechanical Turk de Amazon
- Mechanical Turk Local (código abierto)

¡Gracias!

