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Training Objectives

.

« Recognize the most common machine learning methods used for processing Earth
Science data

« Describe the benefits and limitations of machine learning for Earth Science analysis

At the end of the training, participants will be able to:

« Explain how to apply basic machine learning algorithms and techniques in a
meaningful manner to remote sensing data

« Use an analysis-appropriate fraining dataset to evaluate conditions and solutions
for a given case study

« Complete basic procedures to interpret, refine and evaluate the accuracy of the
results of machine learning analysis
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Reminder of Prerequisites

Prerequisites:

« Session 1 of our on-demand Fundamentals of Remote Sensing series or have
equivalent experience.

« Attendees will need access to Google Drive and Google Colab. To access
these resources, users must use an email ending in ‘gmail.com’.

« We will have the video of this demonsiration within the training recording
available within 48 hours after the presentation for you to go through at your
own pace.
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http://appliedsciences.nasa.gov/join-mission/training/english/fundamentals-remote-sensing

Training Schedule

DA Part 2:
Overview of Training Data and
Machine Learning Land Cover
Classification
Example
April 20, 2023 April 27, 2023

Part 3:

Model Tuning,
Parameter
Optimization, and
Additional
Machine Learning
Algorithms

May 4, 2023

Optional opportunity to earn a certificate of completion

NASA’s Applied Remote Sensing Training Program

Homework

Independent
practice and
application

Due May 19
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Session 3 Outline

« Overview of model tuning

« QOverview of parameter optimization

« Exercise to optimize existing model

« Overview of model explainability and interpretability
« Overview of additional machine learning algorithms

« Hands-On Jupyter Notebook Exercise: Improvements to MODIS
Water Classification Model

« Post-Session Assignment
« Q&A Session

Resources for this Training
hitps://qithub.com/NASAARSET/ARSET ML _Fundamentals
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https://github.com/NASAARSET/ARSET_ML_Fundamentals

Training Objectives

.

After participating in this training, attendees will be able to:

« Recognize the most common optimization methods for machine learning
algorithms used for processing Earth Science data

« Describe the benefits and limitations of machine learning algorithms
opftimization for Earth Science analysis

« Explain how to apply basic explainable artificial intelligence techniques for
machine learning algorithms in a meaningful manner to remote sensing data

h NASA's Applied Remote Sensing Training Program
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Summary from Session 2

 We trained a Random Forest model
that performs binary classification of
water and no-water pixels using MODIS
surface reflectance data.

 We evaluated our model using our test
dataset, and we performed inference
using raster tiles.

« QOur model was able to successfully
identify water pixels, but we also
identified locations where the model
needs improvement.

NASA’s Applied Remote Sensing Training Program
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Model Tuning and Optimization

* Your first model will not always be
the most accurate.

* Most ML model Application
Programming Interface (APIs) will
include default hyperparameters
to initialize your model, which you
can use as a starting point.

* These hyperparameters are set
before the learning process
begins and will influence model
convergence.

* We have several options to
improve our model before adding
or generating more training data.

NASA’s Applied Remote Sensing Training Program
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Model Tuning and Optimization, Cont.

« Most of the time we are not
optimizing our models for the most
common features, we are attempting
to improve our model so it can
generalize across uncommon

run optimize()

features. y
yperparameters Parameters Score
« By fine-tuning the model, we can o layere = 3
. . . - . *=— \Weight
maximize its performance and get X pneuons =512 _—) = N,
the highest rate of performance n_layers = 3 o Weights :
possible. e A
. . ) n_jayers = 5 = Weights )
* Model tuning in general is the L3 nneurons =256 _-—) = o, =) 92%

experimental process of finding the
Op“ﬁ“g' values of hyperporome’rers fo There is a metric we will want to optimize
maximize model performance. for. Image Source: medium.com
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Techniques for Model Tuning

A robust evaluation criterion should
be identified and set before model
tuning to optimize the tuning

parameters towards the specific goal.

Manual Model Tuning:
Hyperparameter values are set based
on intuition or past experience. The
model is then trained and evaluated
to determine the performance using
the respective set of
hyperparameters.

Automated Model Tuning:

opfimal hyperparameter values are
found using algorithms. Here, we
define a hyperparameter search
space from which the optimal set of
hyperparameter values is selected.

NASA’s Applied Remote Sensing Training Program
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Hyperparameter Tuning

v

Apply search method (Grid, Random, Bayesian)
on one hyperparameter set
T

Select next hyperparameters
set until:
s Grid search: All

combinations are tested.

* Random Search: The

predefined number of
combinations are tested.

* Bayesian Optimization:

The maximum number
of evaluations are
reached.

* GA: Convergence or

termination criteria are
reached.

¢ PSO: Convergence or

termination criteria are
reached.

v

Cross validation

——————

Split Data into k folds

v

For each fold train the Machine learning model

v

Calculate Accuracy

v

Average Accuracy

Assign Average Accuracy to the current
hyperparameter set

Select the hyperparameter set with the best
average Accuracy obtained

|
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Hyperparameter tuning workflow. Hyperopt is an
excellent tool for automated model tuning.



Techniques for Model Tuning

Grid search Random search
; o o 0]
* Grid Search: The user defines a set of valuesfor 5| | | [xodmm| 5| o © o %omimm
each hyperparameter to form a grid. Different 1 IV SR EA
combinations of these hyperparameter values clo—o o -
are tried and the combination which vieldsthe | [ . . . | &le ° °
best result is selected as the final set of optimal °© o -
hyperpOrO meTeI’S. Hyper-parameter 1 ( ) Hyper-parameter 1
a
« Random Search: The algorithm will only try Acquisiion function
random combinations of hyperparameter |
values rather than every possible combination. Bayesian optittization Bayesian optimmization
evaluation results to form the information used g o o Xgmm B | ol o X
to make future decisions in selecting future AN 2l ® e 0
hyperparameter values. £ ° £ N
[]
« At the end, the combination that yields the
best result from this is selected as the optimal Foper pammetet 1 Hyperparameter |
set of hyperparameters. '

Surrogate model
(b)

Grid, Random, and Bayesian optimizations illustrated. Kim et
al. (2021), hitps://doi.org/10.1102/ACCESS.2021.3051619 .

NASA's Applied Remote Sensing Training Program 14



https://doi.org/10.1109/ACCESS.2021.3051619

Exercise: Tuning and Optimization of the

Random Forest Model
Trainer: Jordan A. Caraballo-Vega
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Model Explainability and Interpretability — XAl

ASs we come to rely on
Inferences given by machine
learning models, it is
important that these models
e accurate and
inferpretable.

NASA’s Applied Remote Sensing Training Program
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Arrieta et al. (2019), https://doi.org/10.3389/fnsys.2021.766980



https://doi.org/10.3389/fnsys.2021.766980

Why We Need Reliable Models? - XAl

« Accuracy may not be enough.

‘ Hybrid modelling approaches
X ATI’s future New explainability-preserving modelling approaches

research arena Interpretable feature engineering

* Machine learning models need
to be reliable. High

« Reliability is determined by
interpretability and robustness.

Post-hoc explainability techniques
Interpretability-driven model designs

* |Interpretability: We can explain
why a certain outcome was
predicted.

Model accuracy

« Robustness: Input can be noisy;
we still achieve accurate Low

redictions. Low High
b Model interpretability

Arrieta et al. (2019), hitps://doi.org/10.3389/fnsys.2021.766980
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Post-Hoc Explainability Approaches — XAl

One of the most common
methods of achieving an
interpretable ML model is
through post-hoc
explanation methods
(done after the model is
trained).

These methods use the
output of the model in
conjunction with the
inputs to extract
information about the
model’s decisions.

NASA’s Applied Remote Sensing Training Program
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Model Explainability and Interpretability — XAl

Using SHAP Values for Local Explanations

A toolused commonly - Using Shapely values to provide explanations of single
is SHAP (SHapley decisions for black box models
Additive exPlanations). “

. Black-box

« SHAP is a model- model .
agnostic approach XA My =V | cqplanations 40 g
which can calculate x = (ml{;--fﬂ l > ’\\* Mg |+

L X;: input instance N

an additive feature

. Arrieta et al, 2019
importance score for

each prediction.
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Image Source: https://shap.readthedocs.io/en/latest/index.html
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* Visual Transformers (ViT)
can output attention maps.

« Attention maps are the
infermediate output of the
model that highlights the
important region in the
Image for the target class.

« Visuadlizing attention maps
can lead to a better
understanding of how the
model is processing the
input and which features
are most important for the

prediction.
Remote sensing images and visualization of attention maps in
different moduls. Shamsolmoali et al. (2020), https://doi.org/
NASA’s Applied Remote Sensing Training Program 10.1 109/TGRS-202] 3112481 21
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Closing Remarks
Trainer: Jordan A. Caraballo-Vega



Closing Remarks

« We have:

— Provided a base on the fundamentals of Machine Learning for Earth Science
using a binary classification problem as an example.

— Introduced the general concept of machine learning and possible scenarios
of its benefits across other domains.

— Provided the base to produce an effective training, validation, and test
dataset from both raster and tabular data sources.

— Provided the tools to train and perform inference of a Random Forest model,
including its fine-tuning and XAl analysis.

This is just an intfroduction to the very broad field of Machine Learning. The
fundamentals learned in this training will provide the basis to understand
literature and 1o know when a specific algorithm might be the most applicable.

h NASA's Applied Remote Sensing Training Program 24 .



Contacts

e Trainers:
— Jordan A. Caraballo-Vega: jordan.a.caraballo-vega@nasa.gov
— Jules Kouatchou: jules.kouaichou-1@nasa.gov
— Caleb S. Spradlin: caleb.s.spradlin@nasa.gov
— Jian Li: jan.li@nasa.gov
— Brock Blevins: brock.Blevins@nasa.gov

* Training Webpage:
— https://appliedsciences.nasa.gov/join-mission/training/english/arset-fundamentals-
machine-learning-earth-science

ARSET Website: Check out our sister programs:
— https://appliedsciences.nasa.gov/arset . ‘;‘-‘\
DEVEL@P ‘Qi:'}

WY SERVIR
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Questions?

« Please enter your question in
the Q&A box. We will answer
them in the order they were
received.

 We will post the Q&A to the
training website following the
conclusion of the webinar.

NASA’s Applied Remote Sensing Training Program

ARSET - Fundamentals of Machine Learning
for Earth Science




Thank Youl!
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