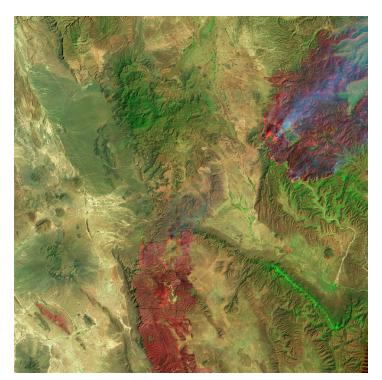

Observaciones de la Tierra para Informar el Riesgo de Desastres y la Respuesta a Sequías, Incendios Forestales e Inundaciones en México


Conjuntos de Datos para Inundaciones, Sequías e Incendios Forestales 8 de mayo de 2023

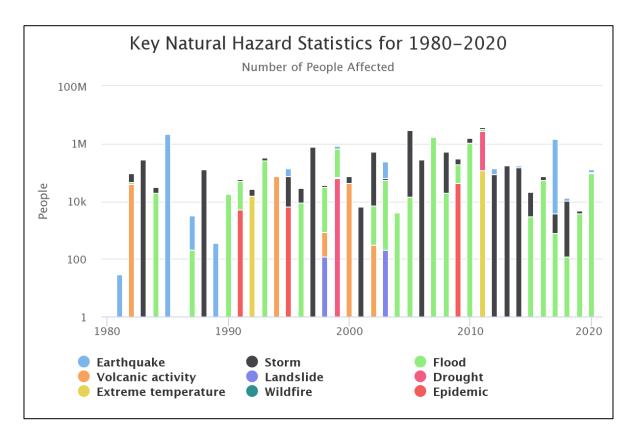
Objetivo:

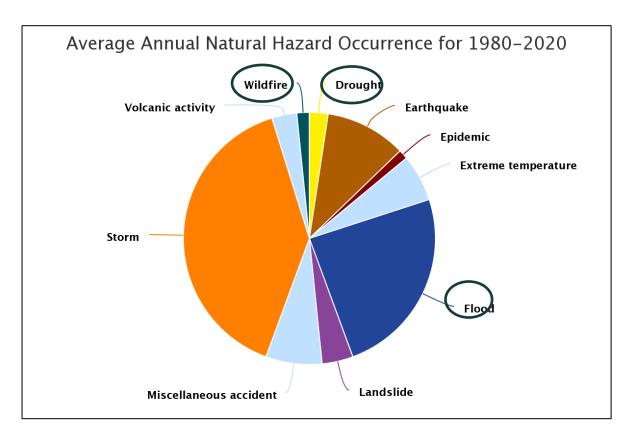
 Al final de esta presentación, usted tendrá información comprensiva sobre las observaciones de la Tierra útiles para el monitoreo del riesgo y los impactos de las inundaciones, sequías e incendios forestales que se utilizaron en esta capacitación.

Fuente: Earth Observatory

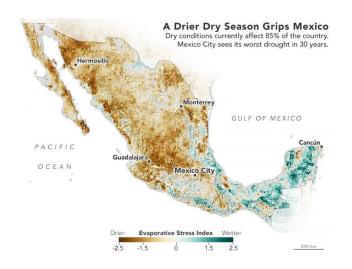
Fuente: <u>Earth Observatory</u>

Esquema

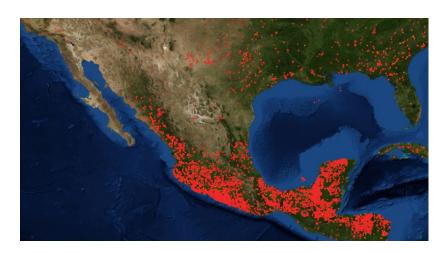



- Parámetros atmosféricos y terrestres relevantes a la evaluación de las condiciones durante las inundaciones, sequías e incendios forestales.
- Satélites y sensores relevantes a la observación de las condiciones durante las inundaciones, sequías e inundaciones.
- Breve repaso de los conceptos de la teledetección.

Peligros Naturales en México



Inundaciones, Sequías, e Incendios Forestales


- ¿Cómo evaluar el riesgo de estos desastres?
- ¿Cómo planificar los impactos y estrategias de respuesta después de un desastre?

Rescate durante inundaciones en San Juan del Río, Querétaro, México, octubre de 2021. Foto; Municipal de San Juan del Río

De NASA Earth observatory

Los puntos rojos representan incendios severos, que son intensos en el sur de México y en la mayor parte de Centroamérica.

NASA

Las observaciones confiables de la tierra y la atmósfera son cruciales para la evaluación del riesgo y las respuestas.

Parámetros Atmosféricos y Terrestres Relevantes a la Evaluación de las Condiciones Durante las Inundaciones, Sequías e Incendios Forestales

Observaciones Relevantes a Inundaciones, Sequías e Incendios Forestales

- Precipitación
- Humedad del suelo
 - características del suelo
- Terreno y pendiente
- Cobertura terrestre
 - ej., vegetación, urbana
- Capacidad de drenaje (para áreas urbanas)

Sequías

- Precipitación
- Humedad del Suelo
- Temperaturas de la superficie de la tierra
- Evapotranspiración

Incendios Forestales

- Vegetación Seca
- Humedad del Suelo
- Condiciones Atmosféricas
 - Precipitación
 - Humedad
 - Relámpagos

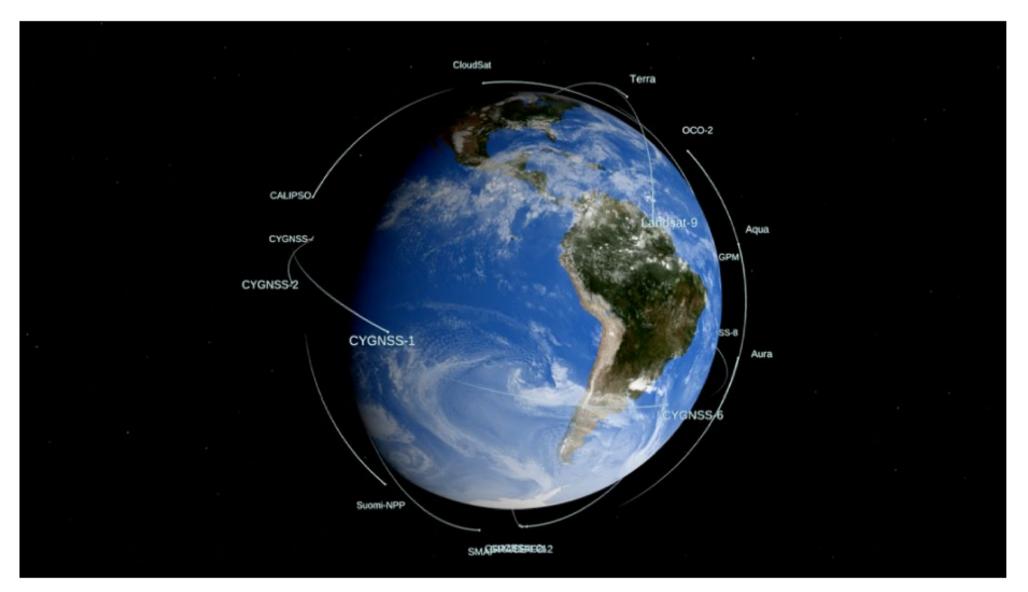
Observaciones Relevantes a Inundaciones, Sequías e Incendios **Forestales**

Inundaciones

- **Precipitación**
- Humedad del suelo
 - características del suelo
- Terreno y pendiente
- Cobertura terrestre
 - ej., vegetación, urbana
- Capacidad de drenaje (para áreas urbanas)

Sequías

- Precipitación
- Humedad del Suelo
- Temperaturas de la superficie de la tierra
- Evapotranspiración


Incendios Forestales

- Vegetación Seca
- Humedad del Suelo
- Condiciones **Atmosféricas**
 - Precipitación
 - Humedad
 - Relámpagos

La teledetección satelital es muy útil para obtener estos parámetros.

Satélites de la NASA de Observación de la Tierra

Satélites y Sensores Utilizados en Esta Capacitación

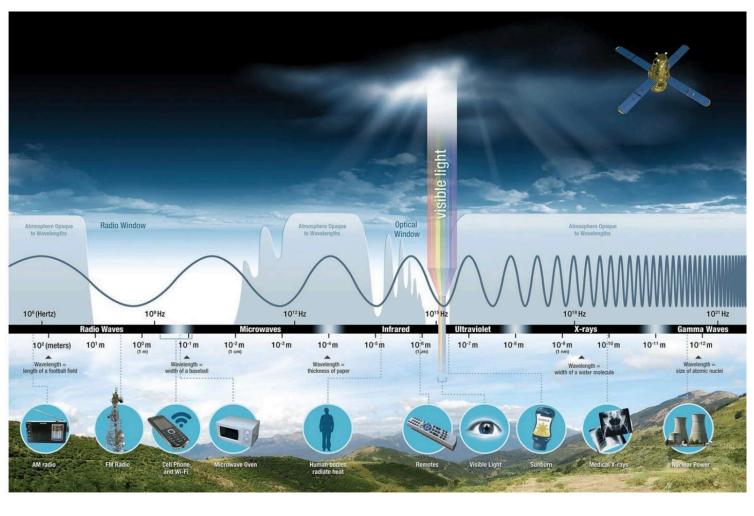
Parámetros	Satélites	Sensores	Mediciones Espectrales
Precipitación	TRMM y GPM	TMI, PR GMI, DPR	TMI: 10-85 GHz GMI: 10-183 GHz PR y DPR (Ku y Ka)
Humedad del Suelo	SMAP	Microwave Radiometer	1.41 GHz
Cobertura Terrestre, Temperatura de la Superficie de la Tierra, Evapotranspiración	Landsat 8,9	OLI, OLI2 TIRS, TIRS2	Visible, IR Cercano, IR Medio, IR Térmico
Cobertura Terrestre, Temperatura de la Superficie de la Tierra, Evapotranspiración	Terra y Aqua	MODIS	Visible, IR Cercano, IR Medio, IR Térmico
Imágenes Diurnas/Nocturnas	SNPP JPSS	VIIRS	

Satélites y Sensores Utilizados en Esta Capacitación

Parámetros	Satélites	Sensores	Mediciones Espectrales
Cobertura Terrestre	Sentinel 1A y 1B	Radar de Apertura Sintética (SAR)	Banda-C
Terreno	Trasbordador Espacial Endeavour	SRTM	Banda-C

DPR	Dual-frequency Precipitation Radar	
GPM	Global Precipitation Measurements	
GMI	GPM Microwave Imager	
IR	Infrared	
JPSS	Joint Polar Satellite System	
MODIS	MODerate-resolution Imaging Spectroradiometer	
OLI	Operational Land Imager	
PR	Precipitation Radar	

SMAP	Soil Moisture Active Passive	
SNPP	Suomi National Polar Partnership	
SAR	Synthetic Aperture Radar	
SRTM	Shuttle Radar Topography Mission	
TRMM	Tropical Rainfall Measuring Mission	
TMI	TRMM Microwave Imager	
TIRS	Thermal Infrared Sensor	
VIIRS	Visible Infrared Imaging Radiometer Suite	

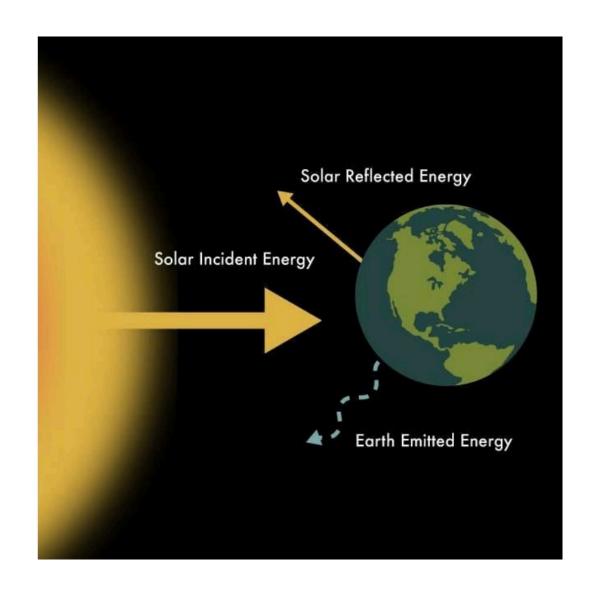


Breve Repaso de los Conceptos de la Teledetección

Sensores Satelitales

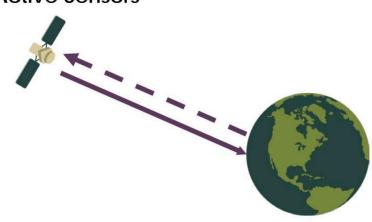
Espectro Electromagnético

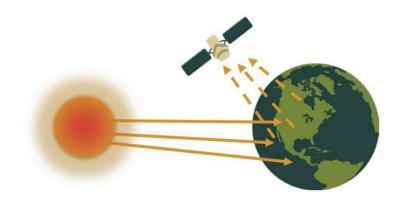
- Los satélites llevan a bordo uno o varios sensores o instrumentos.
- Los sensores miden la radiación electromagnética
 - radiación solar reflejada
 - radiación infrarroja y/o microondas emitidas
 - radiación por parte del sistema tierra-atmósfera



Sensores Satelitales

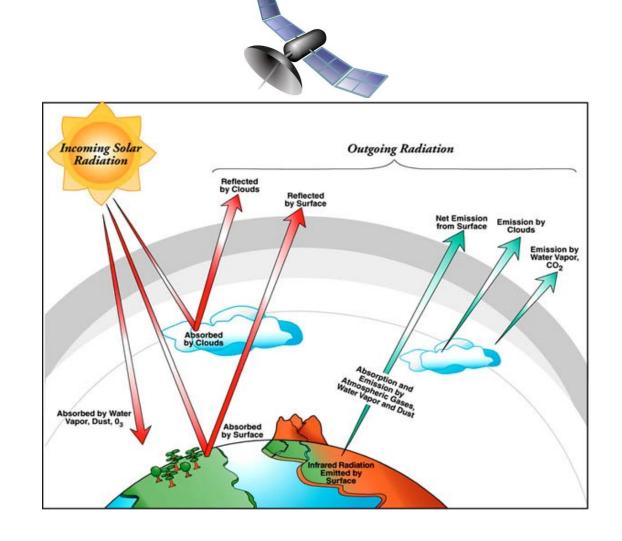
- Los satélites llevan a bordo uno o varios sensores o instrumentos.
- Los sensores miden la radiación electromagnética
 - radiación solar reflejada
 - radiación infrarroja y/o microondas emitidas
 - radiación por parte del sistema tierra-atmósfera




Sensores Satelitales

- Hay dos tipos de sensores: activos y pasivos.
- Un sensor activo tiene su propia fuente de radiación electromagnética que se envía al sistema terrestre y luego el sensor recibe la radiación retrodispersada, por ejemplo, el radar.
- Un sensor remoto pasivo mide la energía radiante reflejada o emitida por el sistema Tierra-atmósfera o los cambios en la gravedad de la Tierra – por ejemplo, un radiómetro, un capturador de imágenes.

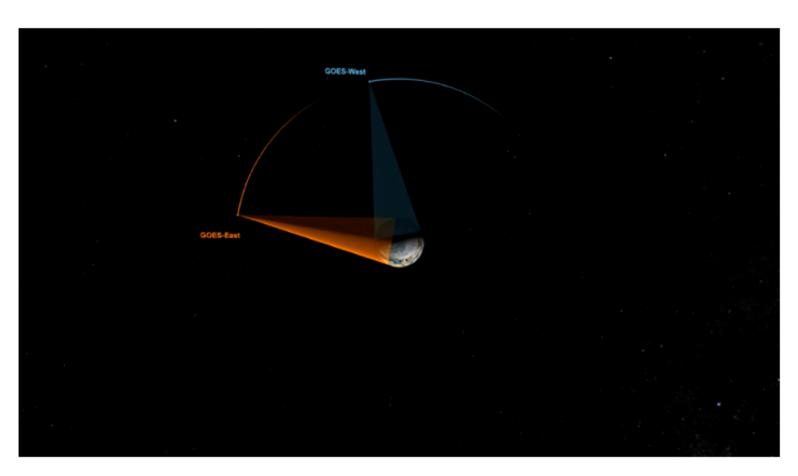
Passive Sensors



Teledetección de Parámetros Físicos

erry.

Se desarrollan metodologías complejas utilizando mediciones de sensores de radiación del sistema tierra-atmósfera, junto con mediciones terrestres y datos basados en modelos para obtener parámetros físicos como temperatura, precipitación, humedad del suelo, cobertura terrestre.



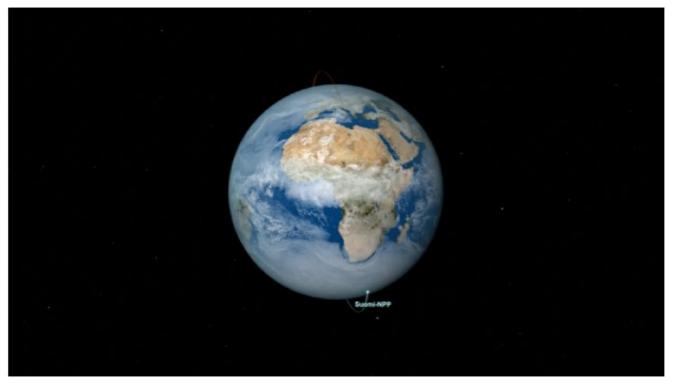
Órbitas Satelitales y Cobertura Espacial y Temporal

m

Órbita Geoestacionaria

- Normalmente orbitan a
 ~36.000 km sobre la línea
 ecuatorial con el mismo
 período de rotación que la
 Tierra
- Varias observaciones al día
- Cobertura espacial limitada — las observaciones son siempre de la misma zona

Fuente: NASA Science and Visualization Studio (SVS)



Órbitas Satelitales y Cobertura Espacial y Temporal

97

Órbita Polar o Heliosíncrona

- Cobertura global.
- Frecuencia de mediciones variada (de una vez al día a una vez al mes).
- Los satélites pasan por encima de las regiones polares en sincronía con el sol—esto significa que el satélite siempre visita el mismo punto a la misma hora local en la Tierra.

Fuente: NASA SVS

Órbitas Satelitales y Cobertura Espacial y Temporal

Órbita de Baja Inclinación

- La órbita se mueve con respecto a la Tierra – puede ser polar o no polar
- Mediciones menos frecuentes
- Cobertura espacial global o casi global

Fuente: NASA SVS

Observaciones Satelitales: Resolución Espacial

- La resolución espacial depende de la configuración de la órbita del satélite y del diseño del sensor.
- Diferentes sensores tienen diferentes resoluciones.
- Significa el área de superficie del suelo más pequeña que forma un elemento de la imagen o píxel en la imagen.
- Cuanto mayor sea la resolución espacial, menos área cubre un solo píxel.

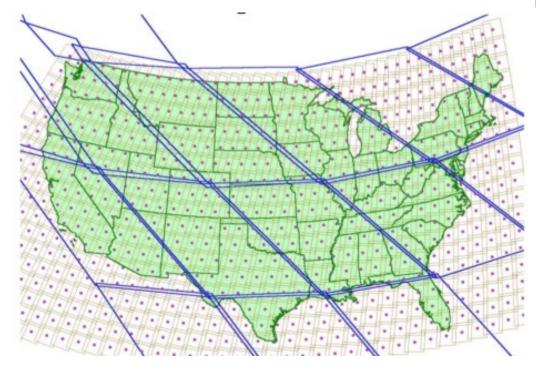
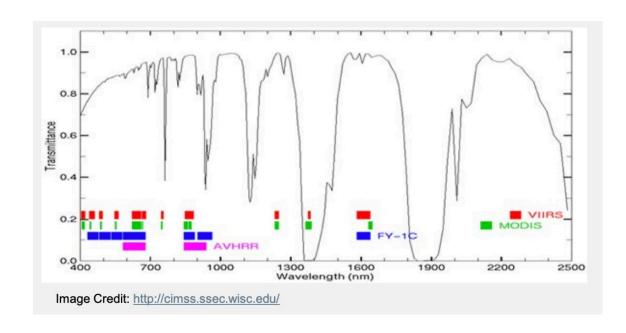


Imagen Landsat 8 de Reykjavik, Islandia, adquirida el 7 de julio de 2019, ilustrando diferentes resoluciones de píxeles Fuente: NASA Earth Observatory.

Observaciones Satelitales: Resolución Temporal


- La resolución temporal es el tiempo transcurrido entre las observaciones del mismo punto en la Tierra por parte de un satélite, también llamado "tiempo de revisita".
- Depende de las capacidades del satélite/sensor, la superposición de la franja (área observada por un sensor mientras se desplaza en la órbita) y la latitud.
- Algunos satélites tienen una mayor resolución temporal porque:
 - pueden maniobrar sus sensores
 - tienen una mayor superposición a latitudes mayores.

Franja orbital de MODIS (recuadros azules) frente a la franja orbital del OLI a bordo de Landsat 8 (recuadros con puntos rojos). Debido a lo que su franja de imágenes es mucho más ancha, MODIS brinda una cobertura global cada 1 o 2 días en comparación con los 16 días de OLI. Los puntos rojos indican el punto central de cada teja del mosaico Landsat Fuente: NASA Earth Observatory

Observaciones Satelitales: Resolución Espectral

- La resolución espectral es la capacidad de un sensor para discernir longitudes de onda más finas, es decir, tener más bandas y que estas sean más estrechas.
- Los sensores que usaremos en esta capacitación son multiespectrales y tienen de 3 a 36 bandas espectrales en el rango de longitud de onda visible (rojo, azul verde), infrarrojo cercano (NIR) y microondas (MW).
- Usaremos bandas espectrales o canales espectrales con longitudes de onda en unidades de nanómetro (nm) o frecuencia en unidades de gigahertz (GHz).

Resumen

- Para evaluar el peligro y los impactos de las inundaciones, sequías a incendios usaremos parámetros derivados de:
 - La constelación multi-satélite GPM (radar de microondas y radiómetros)
 - Landsat-8 y Landsat-9 (OLI, TIRS)
 - Aqua y Terra (MODIS)
 - NPP y JPSS (VIIRS)
 - SMAP (radiómetro de microondas)
 - Sentinel-1 (radar de microondas)
- Accederemos a datos disponibles de Google Earth Engine (GEE) (https://earthengine.google.com/)

Resumen

m

- Usaremos datos auxiliares de GEE:
 - Terreno (SRTM)
 - Imágenes de Luces Nocturnas (VIIRS)
 - Vientos (MERRA2, NASA atmospheric model)
 - Densidad Poblacional
 - Superficies Impermeables

A Continuación: Teledetección de las Precipitaciones