

Aerosol Observations from Geostationary Sensors

Pawan Gupta, Melanie Follette-Cook, Sarah Strode, Carl Malings

NASA Air Quality Remote Sensing Training, US EPA, Raleigh, NC, March 21-23, 2023

GOES-R ABI

- Default Operational Mode:
 - Full Disk: 15 10 min
 - CONUS: 5 min
 - Mesoscale: 1 min

Polar orbiting satellites only provide 1-2 observations per day, which limits their application for continuous air quality monitoring.

Aerosols Datasets

NASA

- Dark Target (10 km) Available on request
- Deep Blue (10 km) Future
- MAIAC (2km?) Future

NOAA

- 2 km - Available

GOES-R ABI

Aerosol Optical Depth

NASA Aerosol Datasets
Dark Target (https://darktarget.gsfc.nasa.gov/)

Global Aerosol Retrieval from MODIS

m

- Dark Target ("DT" Ocean and Land)
 Operational at 3 and 10 km from both Terra
 & Aqua MODIS since their launch.
- Initially developed by Kaufman & Tanre, 1997
- Revised Levy & Remer, 2007, 2013
- 3 km Product Remer et al., 2013
- Urban Surfaces Gupta et al., 2016
- Applied to AHI Gupta et al., 2019
- Today, multiple aerosol retrieval algorithms coexist.

Dark Target Aerosol Retrieval Algorithm

GEO Constellation

Importing the MDT Algorithm to AHI & ABI

- ABI does not have a green channel ocean retrieval.
- Surface characterization needs revision to account for the change in wavelength. SWIR NDVI are revised and estimated using a pair of 0.86 & 2.3 µm channels as compared to 1.24 and 2.1 in MODIS.
- Pixel selection, cloud masking (no cirrus band (1.37 µm) in AHI), and aerosol model selection remain the same as the MODIS DT algorithm.
- Gas corrections and look-up tables are revised for GEO channels.
- The revised algorithm is applied on AHI and ABIs.

Himawari – April-May 2016 KORUS-AQ

AHI vs. AERONET

GOES-East & GOES-West

Preliminary ABI Validation – August 2018

15-minute full disk data from ABI are used for this analysis.

Integrated Data – Preliminary Work

- Same DT algorithm applied to 3 LEO and 3 GEO sensors
- Initial data are integrated using simple box averaging method
- December 1, Every 30 Minutes

NOAA Aerosol Products
(Slides Taken from Amy K. Huff, Presented at ARSET Training on GEO)

ABI AOD Specifications and Availability

- AOD is available from ABI on GOES-16 (GOES-East) and GOES-17 (GOES-West).
 - GOES-18 replaced GOES-17 as GOES-West in January 2023.
- ABI AOD Data Range: [-0.05, 5]
- Separate AOD algorithms for over land and water
- MODIS and Early VIIRS Heritage (Tanre et al., 1997; Remer et al., 2005; Levy et al., 2007, Vermote et al., 2007)

ABI Band	Wavelength (µm)	AOD Retrieval		Internal Test	
		Land	Water	Land	Water
1	0.47	Х			Х
2	0.64	Х	Х		
3	0.865		Х	Х	
4	1.378			Х	Х
5	1.61		Х	Х	
6	2.25	X	Х		
14	11.2			X	X

Sensor	Satellite	Spatial Resolution (km) at Nadir	Coverage**	Maturity Level†	Availability Starting
ABI	GOES-16	2.0	Full Disk CONUS	Provisional*	7/25/2018
	GOES-17	2.0		Provisional*	1/1/2019

AOD is **notavailable from
the ABI
Mesoscale
sectors!

[†]Definitions of aerosol product maturity levels (e.g., validated, provisional, beta) are listed <u>here</u>.

^{*}Provisional status means product quality may not be optimal; incremental product improvements are still occurring; product is ready for operational evaluation; and the research community is encouraged to participate in the quality assurance/validation of the product.

GOES-16 ABI AOD Validation

Over Land

- High quality GOES-16 ABI AOD (most recent version)
- Validated with Version 3 Level
 1.5 Near Real-Time AERONET
 AOD
- Validation Period: 24 Oct 2020 to 23 Sep 2022

Over Water

ABI AOD Data Quality Flags

- ABI AOD data files include data quality flags.
 - Express confidence in AOD data
 - Figure: Example of ABI AOD Quality Flags
- High-Quality: Most accurate, use for all quantitative applications (e.g., modeling)
- Medium-Quality: Some uncertainty, use for qualitative applications (e.g., forecasting)
- Low-Quality: High uncertainty, avoid for most applications
- ABI AOD not retrieved in areas with:
 - Clouds
 - Snow or Ice
 - Bright Land Surface
 - Sun Glint (measurement artifact; occurs when sunlight reflects off surface of ocean/lake at same angle that sensor is viewing surface)
 - Nighttime (need visible light)

Figure courtesy of Mi Zhou (IMSG) and Istvan Laszlo (NOAA)

Examples of High-, Medium-, and Low-Quality ABI AOD

ABI AOD Images Generated from netCDF4 Files using Python

- Example: GOES-17 ABI AOD, highlighting smoke from Airport and Bond fires near Los Angeles, CA on Dec 3, 2020
- High-Quality AOD is the most accurate, but is missing part of the smoke plume. Also, there are big gaps along coastlines (very stringent screening).
- High- + Medium-Quality AOD ("top 2 qualities")
 fills in most of the smoke plume and some of the
 gaps along the coastlines.
- High- + Medium- + Low-Quality AOD ("all qualities") fully resolves the smoke plume, but at the expense of erroneous high AOD values along coastlines and over inland shallow lakes.
- Bottom Line: Make sure you process AOD using the appropriate data quality flags!
 - Avoid low-quality AOD for most situations.
 - Use high- + medium- ("top 2") qualities AOD for routine operational applications!

Strengths and Limitations of GOES-R ABI AOD

Strengths:

- Quantitative Measure of Aerosols
 - Can be used to estimate surface concentrations of PM_{2.5}
- Easy to interpret and identify areas of high aerosol concentration from smoke, blowing dust, haze
- Supplements visible imagery
 - L1b Radiances (e.g., ABI band 1 & 2)
 - True Color or GeoColor Imagery

Limitations:

- Column Measurement
 - Geographic 2D location of aerosols only
 - No information about vertical distribution of aerosols in atmosphere
 - Smoke/dust/haze may not be reaching surface
- No ABI AOD in areas with clouds, snow, ice, sun glint, bright surfaces
- Available during daytime only

Aerosol Detection:

Decoding ABI L2 Data File Names

ADPF

ADPC ADPM OR_ABI-L2-AODC-M6_G16_s20202601501123_e20202601503496_c20202601506349.nc

Aerosol Optical Depth:

AODF AODC

- System Environment: <u>Operational system using Real-time data</u>
- Sensor: Advanced Baseline Imager
- Data Processing Level: <u>Level 2</u>
- Product Name: abbreviation for product ("AOD") + scan sector ("C" = CONUS, "F" = Full Disk)
- Scan Mode: Mode 6 (current "flex mode"); also, M3, M3G, M4
- Satellite: <u>GOES-16</u>; also, G17 and G18

- Observation start/end, file creation time:
 - YYYY (4-digit year. e.g., 2020)
 - DDD (3-digit Julian day, e.g., **260**)
 - HHMM (4-digit hour/minutes in UTC, e.g., 1501)

Data File

Creation Time

cYYYYDDDHHMMSSS |.nc

SSS (3-digit seconds to tenth of second)

Where to Find ABI AOD Data Files

- ABI L1b (radiances) and L2 data files (including AOD) are available via the NOAA GOES-R data archive on Amazon Web Services (AWS).
 - Separate links ("buckets") for GOES-16 and GOES-17 and GOES-18 data
 - Available files updated in near real-time
 - You can download files manually or programmatically.
 - Free and easy! No registration is required!
 - You do NOT need to have an AWS account!!
- Part of NOAA's <u>Open Data Dissemination (NODD) Program</u>

NOAA Geostationary Operational Environmental Satellites (GOES) 16, 17 & 18

agriculture disaster response earth observation geospatial meteorological satellite imagery sustainability weather

Questions & Discussion