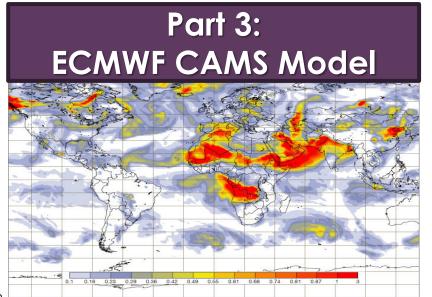

# Global Air Quality Forecasting at NASA


Melanie Follette-Cook & Pawan Gupta

September 28, 2021

# **Webinar Agenda**









# **Webinar Agenda**







**Pawan Gupta** 



# **Learning Objectives**

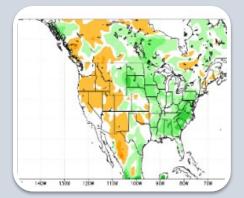


- Identify the different Air Quality (AQ) relevant model outputs available from Goddard Earth Observing System (GEOS) Earth System Model
- Understand the difference between analysis, reanalysis, and forecasting
- Understand the different ways satellite observations are used for forecasting, reanalysis, and evaluation
- Discover how to subset and visualize reanalysis and forecast outputs



# NASA GEOS Earth System Model

https://gmao.gsfc.nasa.gov/






#### NASA GEOS Earth System Model









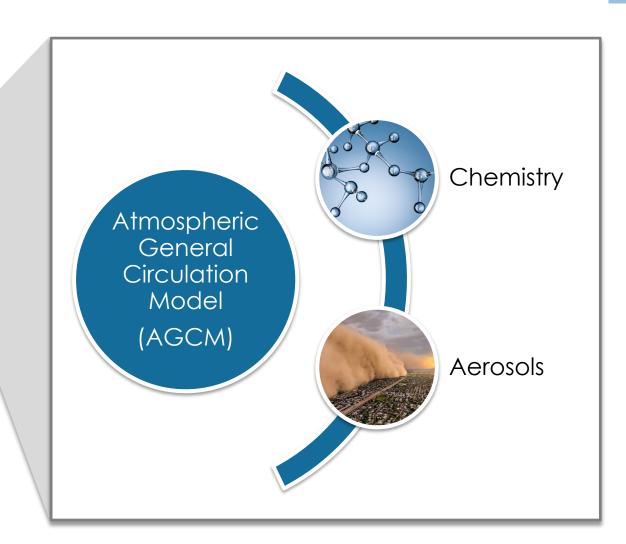


NRT Weather and Chemical Forecasts

Reanalysis

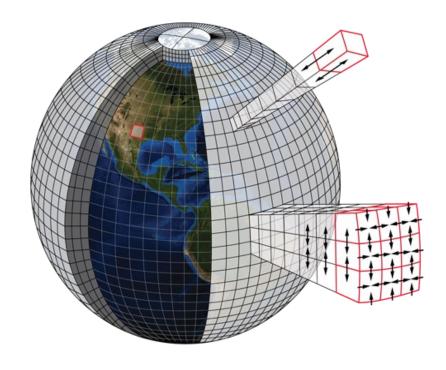
Seasonal to Sub-Seasonal (S2S) and Decadal Prediction

High Resolution Mesoscale Modeling

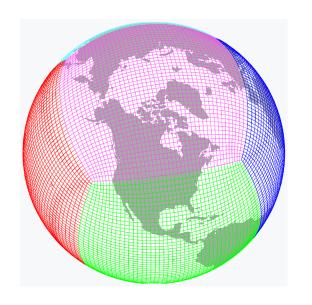

Observing System Science



# **NASA GEOS Earth System Model**


https://gmao.gsfc.nasa.gov/








#### Modeling the Atmosphere



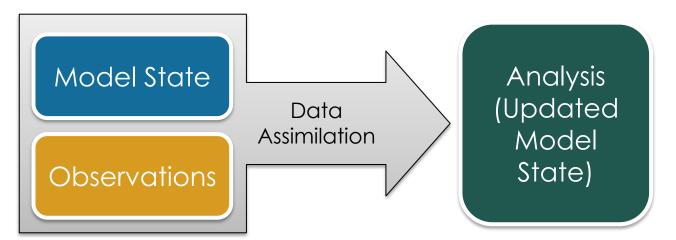
Three-dimensional (3D) atmospheric chemistry models divide the atmosphere into a set of 3D grid cells.



The GEOS AGCM is run on a cubed sphere grid.

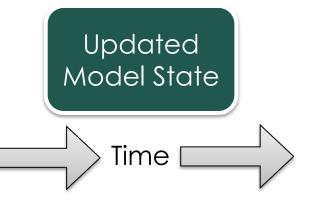
- Ensures uniform spatial grid
- Better for scalability

Models solve equations for physics, transport, and chemistry within each grid cell.






# Forecast, Analysis, Reanalysis, Data Assimilation What are the differences between these?


#### Data assimilation

describes the process of assimilating, or incorporating, observations into a model state to produce the best estimate of the atmosphere, land, and ocean conditions.



An **analysis** is the blend of the model and observations.

A **reanalysis** blends observations with model simulations of the past using a single model version.



A **forecast** is a model simulation run forward in time to predict a future state.

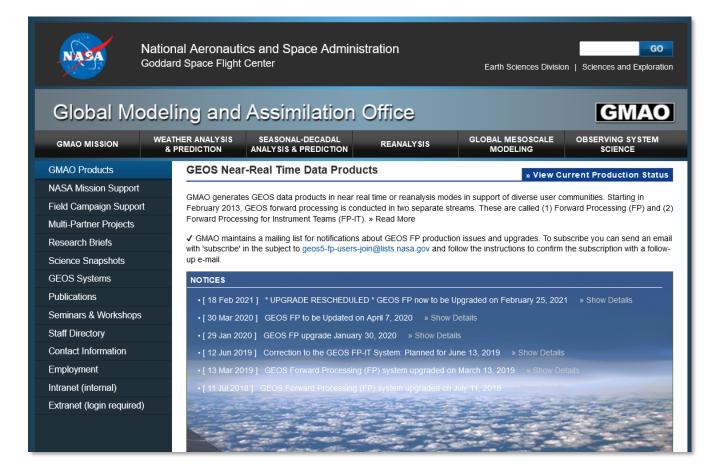


# **GEOS Forecast and Reanalysis Products**

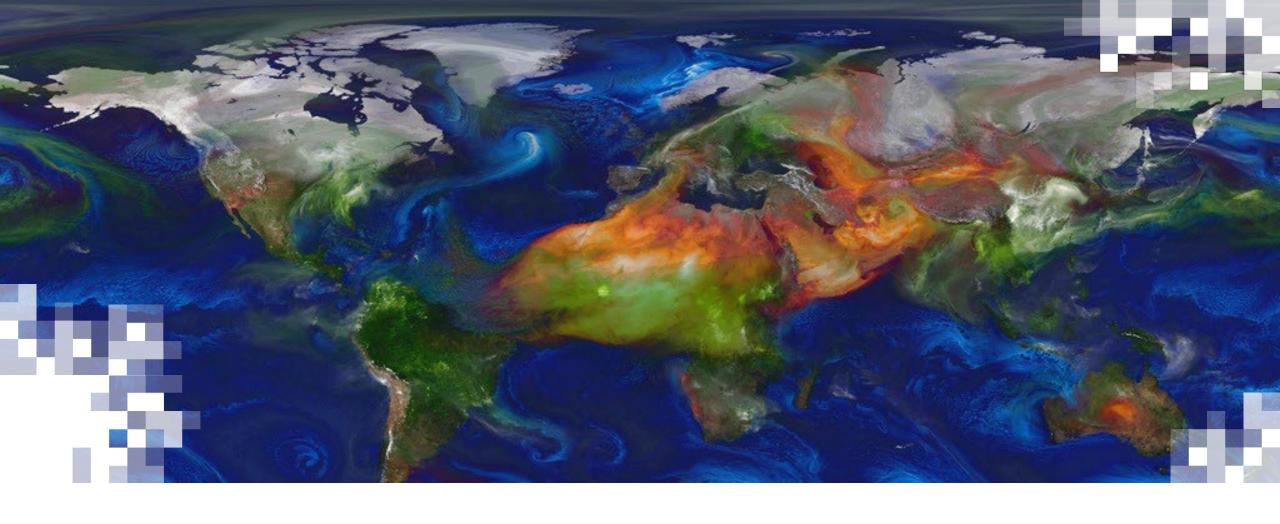


GEOS Forward Processing (GEOS FP) NRT Analysis and Forecast GEOS-Composition
Forecast
(GEOS-CF)
NRT Forecast

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) Reanalysis




# Global Modeling and Assimilation Office (GMAO)


https://gmao.gsfc.nasa.gov/GMAO\_products/NRT\_products.php

- The GEOS forecasts are a dynamic system.
- For the most current information about GEOS NRT products, visit the GMAO website.
- The most current version of file specification documents are covered here:

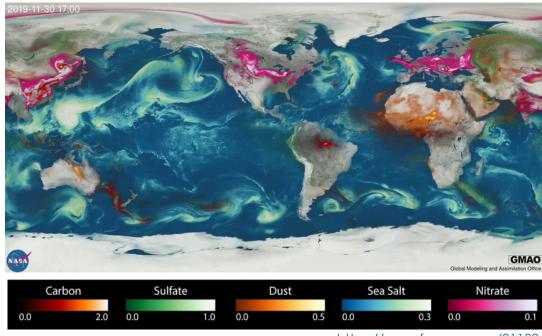
https://gmao.gsfc.nasa.gov/pubs
/office\_notes.php







GEOS FP


#### **GEOS FP**

# m

#### https://gmao.gsfc.nasa.gov/weather\_prediction/

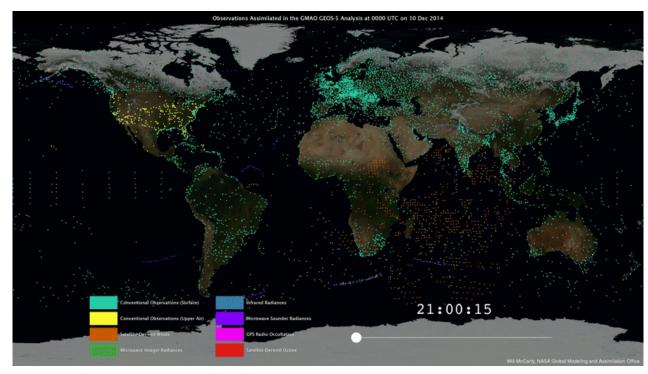
- GEOS FP analyses and forecasts support NASA field campaigns and provide a testbed for assimilation and forecast development
- Publicly available
- Includes weather, aerosols, and carbon monoxide (CO) on the same spatial scale
- State of the science forecast system model physics or observing system updated every 6-12 months
  - Not suitable for trend analyses

AOD (550 nm)



https://svs.gsfc.nasa.gov/31100

- Meteorology used to drive chemistry models:
  - GEOSChem, Whole Atmosphere Community Climate Model (WACCM)
- When using FP meteorology fields to drive another model, must ensure your simulation does not span an update
  - GMAO NRT Product Page has updated details and dates


# **GEOS Output Quick Guide**

|                        | GEOS FP                                                     |  |
|------------------------|-------------------------------------------------------------|--|
| Туре                   | Analysis + Forecast                                         |  |
| Domain                 | Global                                                      |  |
| Spatial Resolution     | Simulation: ~12 km<br>Output: ~25 km (0.25°x0.312°)         |  |
| Temporal Resolution    | 2-D data: Hourly<br>3-D data: Every 3 h                     |  |
| Vertical Levels        | 72 (near surface-0.1 hPa)                                   |  |
| Output Available       | Analysis: 2014 – Present<br>Forecast: ~21 days              |  |
| Initialization         | Daily 10-day forecast at 00Z<br>Daily 5-day forecast at 12Z |  |
| Data Assimilation      | Yes                                                         |  |
| File Specification Doc | https://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi1203.pdf *     |  |



#### Data Assimilation in GEOS FP

- Data assimilation describes the process of assimilating, or incorporating, observations into a model state to produce the best estimate of the atmosphere, land, and ocean conditions.
- GEOS uses a Hybrid 4D-Ensemble Variational (Hyb-4DEnVar) approach.
- Analyses are created every 6 hours using over <u>5 million observations</u>.
- GEOS assimilates AOD from MODIS (Terra and Aqua).



https://svs.gsfc.nasa.gov/30590

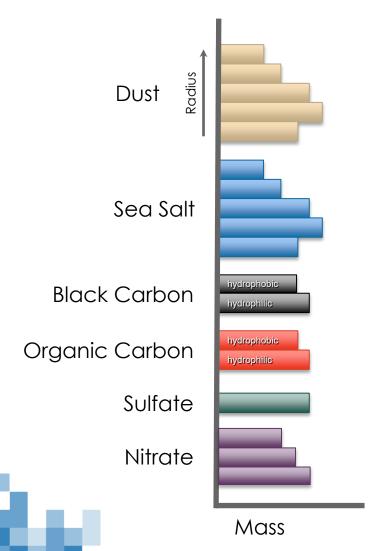
 Important: AOD is the total extinction of all aerosol species, so when AOD is increased or decreased as a result of the assimilation, assumptions are made about how that is distributed among the species.



#### **GOCART in GEOS**

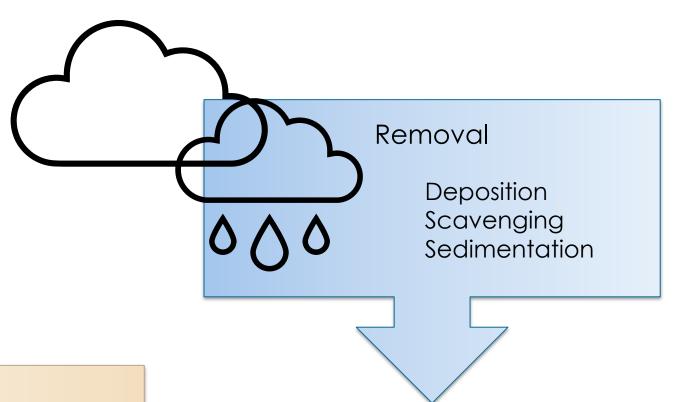
- Goddard Chemistry, Aerosol, Radiation and Transport Model (GOCART, Chin et al. 2002, Colarco et al. 2010)
- Sources and sinks for 6 non-interactive species
- Radiatively active

Wind and topographic sources, 5 mass bins


Wind-driven source, 5 mass bins

Anthropogenic and wildfire sources, mass hydrophobic & hydrophilic

Anthropogenic, biogenic, and fire sources, mass hydrophobic and hydrophilic


Anthropogenic, wildfire, and volcanic


Anthropogenic and wildfire sources



#### **Aerosol Processes**

GOCART simulates the emission, chemistry, and removal of aerosols and CO within each grid cell.







#### Aerosol Emissions:

- Dust: Ginoux et al., 2001
- Fire emissions: Quick Fire Emissions Database (QFED), Darmenov et al., 2015
- $SO_2$ : Hemispheric Transport of Air Pollution (HTAP), enhanced by OMI  $SO_2$  observations, Janssens-Maenhout et al. (2015), Liu et al. (2018)
- Anthropogenic emissions: HTAP
- Volcanic emissions: Carn (2019)





# **Example GEOS FP File Name**



GEOS.fp.fcst.tavg3\_2d\_aer\_Nx.20210901\_00+20210902\_1330.V01.nc4



#### **GEOS FP File Collections**

- GEOS FP output is organized into file collections that contain related variables.
- These have the form:

Frequency\_Dimensions\_Group\_HV

#### **Frequency**

Frequency or averaging interval

- const = timeindependent
- inst = instantaneous
- tavg = time-average

#### **Dimensions**

Dimensions of variables

- 2d = only 2d fields
- 3d = can have 2d and 3d

#### Group

Three letter abbreviation for the type of variables

- Also used in the short name
- Ex. aer = Aerosol fields
- See documentation for full list

#### HV

Horizontal and vertical grid

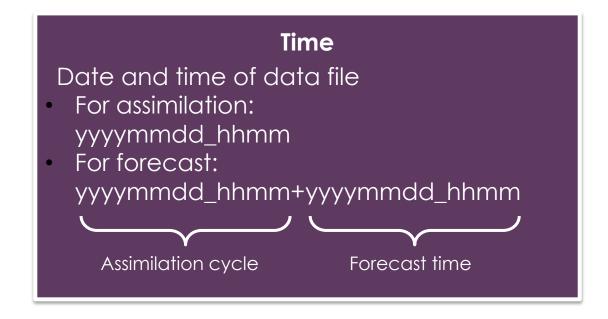
- H = typically N, for nominal grid
- V = x, horizontal only
- V = p, pressure level
- V = v, model level
- V = e, model layer edges



# **GEOS FP Output File Names**

Each GEOS FP file has the form:

GEOS.fp.mode.collection.time.file\_ver.nc4


#### Mode

- asm = assimilation
- fcst = forecast

Collection

See previous slide

File\_ver
File version (usually V01)



All GEOS FP output files are in NetCDF-4 format.

## **Example GEOS FP File Name**



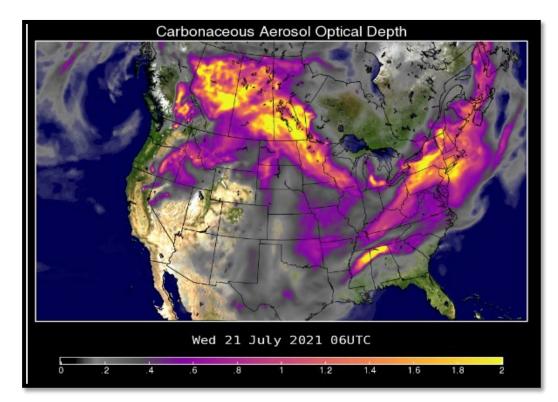
GEOS.fp.fcst.tavg3\_2d\_aer\_Nx.20210901\_00+20210902\_1330.V01.nc4

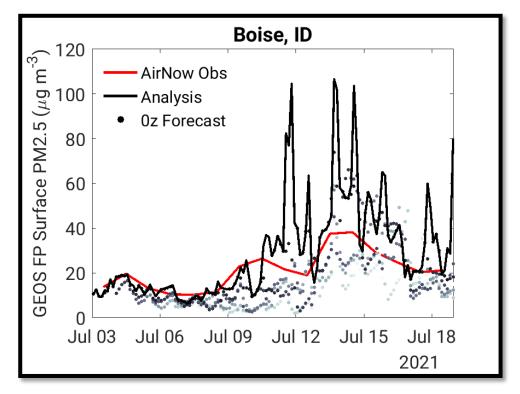
- fp forward processing
- fcst forecast product
- tavg3\_2d\_aer\_Nx: 2D time-averaged aerosol diagnostics
- 20210901\_00+20210902\_1330 : Forecast initialized at 2021-09-01 00 Z. The valid time for the data in this file is 2021-09-02 1330 Z, which represents the center point of a 3-hour time-averaging period between 1200 and 1500 Z.



#### **AQ-Relevant Collections and Variables**

https://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi1203.pdf \*


| Collection Name | Description                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tavg3_2d_aer_Nx | 2D time-averaged aerosol diagnostics Optical properties (Extinction AOT, Scattering AOT, Angstrom parameter) Surface concentration (kg/m³), Column Density (kg/m²) |
| tavg3_2d_adg_Nx | 2D time-averaged aerosol diagnostics (extended) Emissions and removal processes (deposition, sedimentation, and scavenging)                                        |
| tavg3_2d_chm_Nx | 2D time-averaged chemistry diagnostics Surface CO, column CO, emissions, chemical loss, chemical production                                                        |
| inst3_3d_aer_Nv | 3D instantaneous aerosol diagnostics<br>Mass mixing ratios (kg/kg) of aerosol species in each size bin                                                             |
| inst3_3d_chm_Nv | 3D instantaneous chemistry diagnostics CO molar mixing ratio (mol/mol)                                                                                             |

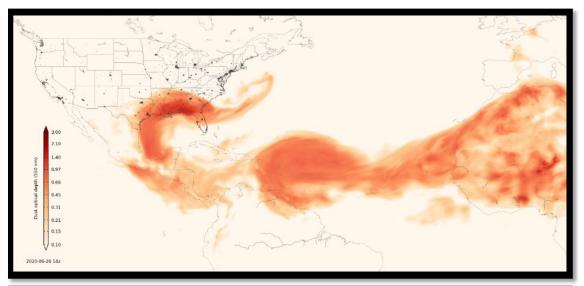

#### To calculate $PM_{2.5}$ , use the formula:

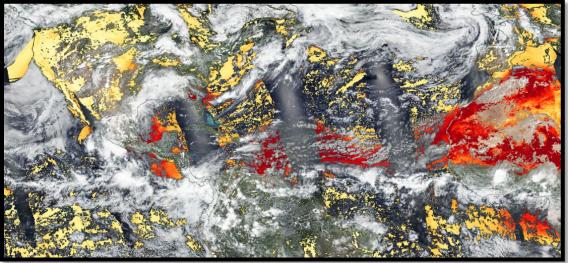
 $PM_{2.5}$ =[DUSMASS25]+[SSSMASS25]+[BCSMASS]+[OCSMASS]+1.375×[SO4SMASS]+1.29×[NISMASS25] These variables are contained in the  $tavg3\_2d\_aer\_Nx$  collection. In the near future, GEOS FP output will include a  $PM_{2.5}$  variable.



## Case Study: 2021 Biomass Burning Season

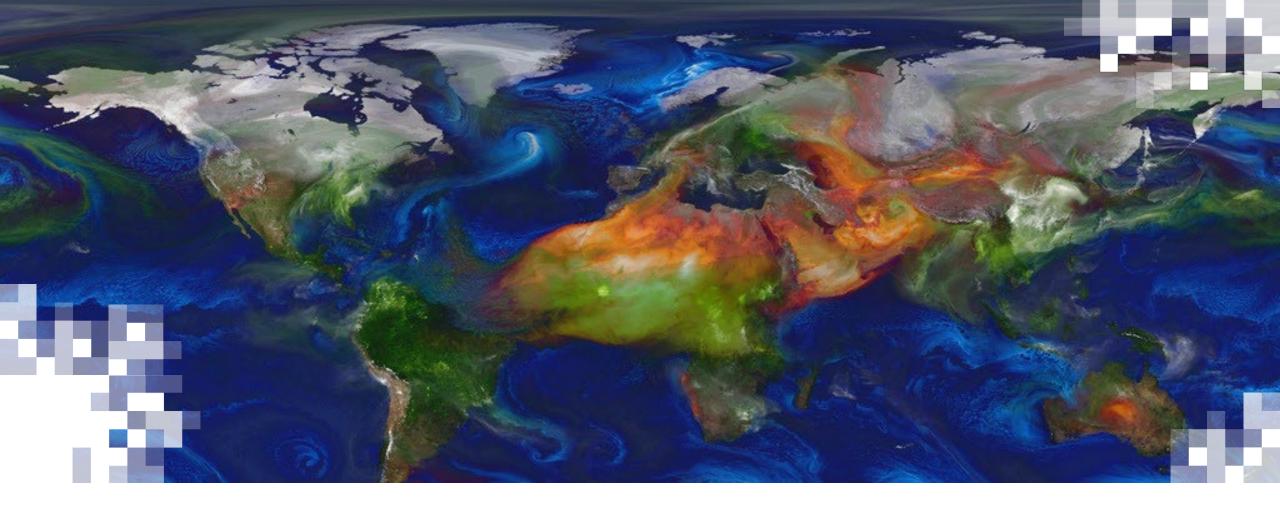






https://gmao.asfc.nasa.gov/research/science snapshots/2021/na biomass burning 2021.php

At the beginning of July 2021, GEOS FP was able to accurately simulate current conditions and forecast the amount of  $PM_{2.5}$  as a result from the smoke from the wildfires in the region. However, beginning on July 10th, GEOS FP overestimated  $PM_{2.5}$  at the surface near Boise, Idaho.

## Case Study: June 2020 Dust Storm

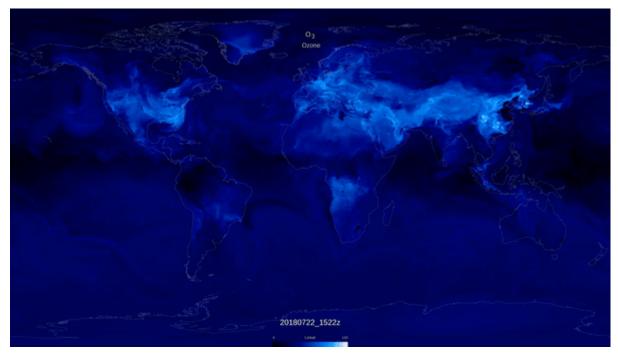

- During June 2020, dust was transported across the Atlantic Ocean.
  - Highest Caribbean aerosol loading in the last 20-year period
  - Surface concentrations almost three times higher than the 24hour EPA standard
- GEOS FP analysis (top) shows the Saharan dust on June 26, 2020 at 14z
- VIIRS AOD (Deep Blue, Land and Ocean) and true color imagery shows the satellite observed plume on the same day (bottom, <u>Worldview</u>)





https://gmao.gsfc.nasa.gov/research/science\_snapshots/2020/Saharan\_dust\_2020.php



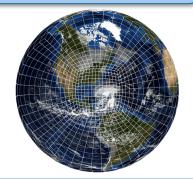



GEOS-CF

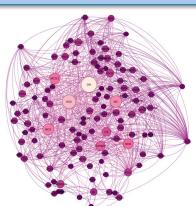
# NASA Composition Forecasts (GEOS-CF)

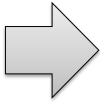
https://gmao.gsfc.nasa.gov/weather\_prediction/GEOS-CF/

- The GEOS-Composition Forecast (CF) system forecasts trace gas and aerosol fields using constrained meteorology from GEOS and the GEOS-Chem chemical mechanism.
- Publicly available
- GEOS-Chem is a community-developed global 3-D model of atmospheric chemistry.
  - 250 chemical species
  - 725 chemical reactions
- Questions about GEOS-CF can be sent to geos-cf@lists.nasa.gov




https://svs.gsfc.nasa.gov/4754





# NASA Composition Forecasts (GEOS-CF)











#### GEOS-CF

- GEOS-Chem: Global chemistry transport model driven by GEOS meteorology
- 1-day simulation of the previous day using the analysis from FP-IT
  - Uses a replay technique to force the meteorology towards the FP-IT analysis
  - FP-IT is a 'frozen' version of FP used for satellite retrievals, similar to the version used to make MERRA-2.
- 5-day forecast
- Two aerosol schemes:
  - GOCART Radiatively coupled to AGCM
  - GEOS-Chem No feedbacks to model physics
- Full description in <u>Keller et al., 2021</u>



# **Emissions in GEOS-CF**

| Description | Table 1 Emissions Used by GEOS-CF |             |           |
|-------------|-----------------------------------|-------------|-----------|
| Reference   |                                   | Description | Reference |

| Description                                                                      | Reference                                  | Comments                                                            |
|----------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------|
| Offline inventories                                                              |                                            |                                                                     |
| Anthropogenic NO, CO, black carbon (BC), organic carbon (OC), Ammonia ( $NH_3$ ) | HTAP v2.2 (Janssens-Maenhout et al., 2015) | Global except Africa                                                |
| Anthropogenic SO <sub>2</sub>                                                    | OMI-HTAP (Liu et al., 2018)                | Global except Africa                                                |
| Anthropogenic VOCs                                                               | RETRO (Schultz et al., 2008)               | Global except Africa                                                |
| Anthropogenic NO, CO, SO <sub>2</sub> , BC, OC, NH <sub>3</sub> , VOCs           | DICE-Africa (Marais and Wiedinmyer, 2016)  | Africa                                                              |
| Arctic seabird NH <sub>3</sub>                                                   | Croft et al. (2016)                        |                                                                     |
| Volcanic SO <sub>2</sub>                                                         | Carn (2019)                                | $5\%$ of the sulfur emitted as $SO_4$                               |
| Aircraft $NO_x$ (=NO + NO <sub>2</sub> ), CO, SO <sub>2</sub> , VOCs, BC, OC     | AEIC (Stettler et al., 2011)               |                                                                     |
| Emissions calculated online based on real-time environment                       |                                            |                                                                     |
| Biogenic VOCs                                                                    | MEGAN v2.1 (Guenther et al., 2012)         |                                                                     |
| Biomass burning (wildfires) $NO_x$ , $CO$ , $SO_2$ , $VOCs$ , $BC$ , $OC$        | QFED v2.5 (Darmenov and da Silva, 2015)    | 35% emitted between 3.5 and 5.5 km altitude (Fischer et al., 2014). |
| Lightning NO <sub>x</sub>                                                        | Murray et al., 2012                        |                                                                     |
| Soil NO <sub>x</sub>                                                             | Hudman et al., 2012                        |                                                                     |
| Soil dust                                                                        | Zender et al., 2003                        |                                                                     |
| Sea salt aerosols                                                                | Gong, 2003; Jaeglé et al., 2011            |                                                                     |
| Oceanic DMS, CH <sub>2</sub> O, C <sub>3</sub> H <sub>6</sub> O                  | Johnson, 2010; Nightingale et al., 2000    |                                                                     |
| Oceanic iodine                                                                   | Carpenter et al., 2013                     |                                                                     |

Keller et al., 2021



# **GEOS Output Quick Guide**

|                        | GEOS FP                                                     | GEOS-CF                                                                                              |
|------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Туре                   | Analysis + Forecast                                         | Replay + Forecast                                                                                    |
| Domain                 | Global                                                      | Global                                                                                               |
| Spatial Resolution     | Simulation: ~12 km<br>Output: ~25 km (0.25°x0.312°)         | ~25 km (0.25°x0.312°)                                                                                |
| Temporal Resolution    | 2-D data: Hourly<br>3-D data: Every 3 h                     | 15 min, Hourly                                                                                       |
| Vertical Levels        | 72 (near surface-0.1 hPa)                                   | 72 (near surface-0.1 hPa)                                                                            |
| Output available       | Analysis: 2014 – Present<br>Forecast: ~20 days              | Replay: 2018 – Present<br>Forecast: 2019 – Present (aqc<br>collection)<br>~14 days (all collections) |
| Initialization         | Daily 10-day forecast at 00Z<br>Daily 5-day forecast at 12Z | Daily 5-day forecast at 12Z                                                                          |
| Data Assimilation      | Yes                                                         | No                                                                                                   |
| File Specification Doc | https://gmao.gsfc.nasa.gov/pubs/docs/L<br>ucchesi1203.pdf * | https://gmao.gsfc.nasa.gov/pubs/docs<br>/Knowland1204.pdf *                                          |



#### **GEOS-CF File Collections**



These have the form:

Group\_Time\_#Frequency\_H\_V

#### Group

Three letter abbreviation for the type of variables

- agc= AQ relevant
- chm = chemistry
- htf = High-temporal freq
- met = meteorology
- xgc = extra chem fields

#### **Time**

- inst = instantaneous
- tavg = time-average

#### **Frequency**

Frequency or averaging time interval

- mn = minute
- hr = hour

#### Н

Horizontal grid, hlxJ

- h = horizontal domain
  - g (global) or r (regional)
- IxJ = horizontal resolution(# lon points, # lat points)

#### V

Vertical resolution, vL

- v = x, 2d fields
- v = p, pressure levels
- v = v, model levels
- L = # vertical levels



#### **GEOS-CF File Names**

Each GEOS-CF file has the form:

GEOS-CF.version.mode.collection.timestamp.nc4

#### Version

File version (usually V01)

#### Mode

- rpl = replay
- fcst = forecast

**Collection**See previous slide

# Timestamp Date and time of data file For assimilation: yyyymmdd\_hhz For forecast: yyyymmdd\_hhz+yyyymmdd\_hhmmz Assimilation cycle Forecast time



#### **Example GEOS-CF File Name**



GEOS-CF.v01.fcst.chm\_tavg\_1hr\_g1440x721\_v1. 20190309\_12z+20190314\_0730z.nc4

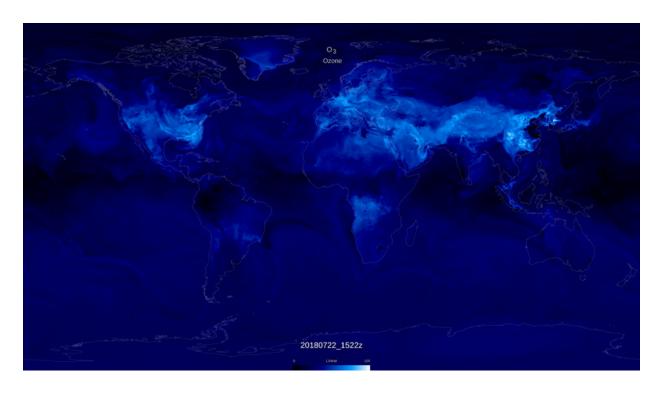
- GEOS-CF.v01.fcst GEOS-CF forecast filename
- chem\_tavg\_1hr\_g1440x721\_v1 Chemical species collection ("chm"), 1-hour time-averaged ("tavg\_1hr") at the global ~0.25° horizontal resolution ("g1440x721") for single model layer data ("v1")
- 20190309\_12z+20190314\_0730z Forecast initialized at 20190309 at 12 Z. The valid time for the data in this file is 20190314 at 0730 Z, which represents the center point of a one-hour time-averaging period between 0700 and 0800 Z



#### **AQ-Relevant Collections and Variables**

https://gmao.gsfc.nasa.gov/pubs/docs/Knowland1204.pdf \*

| Collection Name            | Description                                                                                                                                              |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| htf_inst_15mn_g1440x721_x1 | High Temporal Frequency Chemistry and Meteorology Surface CO, $NO_2$ , $O_3$ , $SO_2$ , $PM_{2.5}$ (GCC & GOCART), and meteorology (RH, T, P, etc)       |
| aqc_tavg_1hr_g1440x721_v1  | Air Quality Concentrations One-hour time-averaged surface CO, $NO_2$ , $O_3$ , $PM_{2.5}(GCC)$ , $SO_2$                                                  |
| chm_tavg_1hr_g1440x721_v1  | Chemistry Fields One-hour time-averaged surface mixing ratios of many chemical species and speciated $PM_{2.5}$ (GCC)                                    |
| xgc_tavg_1hr_g1440x721_x1  | Extra GEOS-Chem Fields One-hour time-averaged AOD, column quantities, and removal processes (deposition)                                                 |
| chm_inst_1hr_g1440x721_p23 | Chemistry Fields 3D (23 pressure levels, 1000 to 10 hPa) instantaneous CO, NO <sub>2</sub> , O <sub>3</sub> , PM <sub>2.5</sub> (GCC, speciated), $SO_2$ |


#### There are two $PM_{2.5}$ variables:

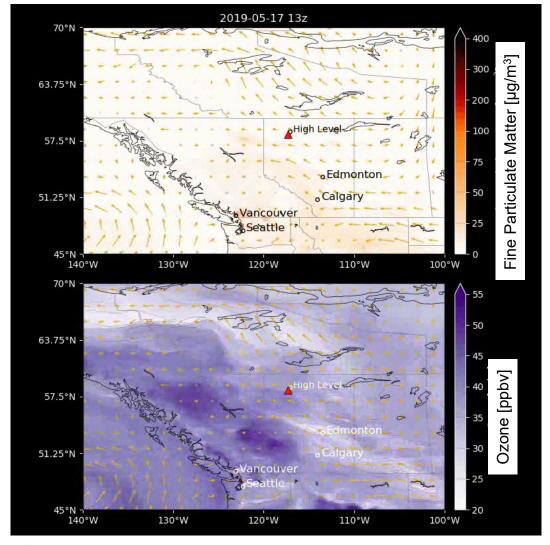
- PM25\_RH35\_GCC: PM<sub>2.5</sub> at 35% RH from GEOS-Chem (GCC)
- PM25\_RH35\_GOCART: PM<sub>2.5</sub> at 35% RH from GOCART (only available in htf)



# Case Study: High Resolution Simulation of Ozone

- Surface O<sub>3</sub> from GEOS-CF during the summer of 2018
- O<sub>3</sub> is a pollutant produced and destroyed through interactions of various chemical species such as nitrogen oxides (NO<sub>2</sub>, NO) and volatile organic compounds (VOCs).
- Forecasted concentrations of pollutants like  $O_3$ ,  $NO_2$ , and  $PM_{2.5}$  can be combined to calculate air quality indices.






https://svs.gsfc.nasa.gov/4764



# Case Study: O<sub>3</sub> and PM<sub>2.5</sub> Forecasts During 2019 Canadian Wildfires

- Smoke from fires led to poor air quality in the Northwest US.
- Within the smoke plumes, high concentrations of NO consume  $O_3$ , leading to lower  $O_3$  levels (lighter colors) near the source.
- As the plume mixes with surrounding air, O<sub>3</sub> is produced, leading to increased concentrations near the plume edge.
- $O_3$  produced in wildfire plumes can be comparable to urban pollution levels.



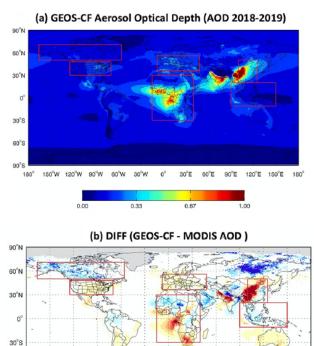


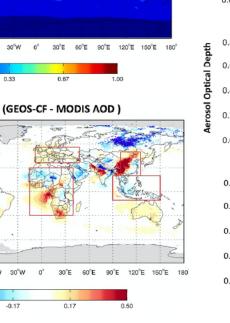


#### **GEOS-CF Evaluation**

m

- Keller et al. (2021) includes a detailed evaluation of GEOS-CF
- Variety of observations used for evaluation
  - Sondes
  - Ground based in-situ
  - Ground based remote sensing
  - Satellite
- Evaluation of both replay and forecast skill included
- Aerosol evaluation of GEOS-Chem aerosols


| Table 2 Overview of Observation Data Sets Used for GEOS-CF Model Validation |                                                                        |                                                                                                     |                                             |  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| Description                                                                 | Species                                                                | # Sites                                                                                             | Reference                                   |  |
| Ozonesonde                                                                  | $O_3$                                                                  | 24                                                                                                  | Tilmes et al., 2012; Thompson et al., 2017  |  |
| NASA OMI NO <sub>2</sub> v4.0                                               | Tropospheric column NO <sub>2</sub>                                    | global                                                                                              | Lamsal et al., 2021                         |  |
| MOPITT v8                                                                   | Total column CO                                                        | global                                                                                              | Deeter et al., 2019                         |  |
| MODIS                                                                       | AOD at 550 nm                                                          | Global                                                                                              | Remer et al., 2005; Levy et al., 2010, 2015 |  |
| AERONET                                                                     | AOD at 550 nm                                                          | 195                                                                                                 | Giles et al., 2019                          |  |
| GAW WDCGG                                                                   | CO                                                                     | 54                                                                                                  | https://gaw.kishou.go.jp/                   |  |
| GAW WDCRG                                                                   | O <sub>3</sub> , NO <sub>2</sub> , SO <sub>2</sub>                     | 48 (O <sub>3</sub> ), 6 (NO <sub>2</sub> ), 9 (SO <sub>2</sub> )                                    | https://www.gaw-wdcrg.org/                  |  |
| OpenAQ                                                                      | O <sub>3</sub> , NO <sub>2</sub> , SO <sub>2</sub> , PM <sub>2.5</sub> | 3151 (O <sub>3</sub> ), 2789 (NO <sub>2</sub> ), 1221 (SO <sub>2</sub> ), 2667 (PM <sub>2.5</sub> ) | https://openaq.org                          |  |


Table 2 from <u>Keller et al., 2021</u>



## **GEOS-CF Replay Evaluation - AOD**

- Comparisons with MODIS Aqua and AERONET AOD
- GEOS-CF shows minimal bias in background regions.
- Overall high bias in AOD, but spatial and seasonal patterns captured
- Overprediction of AOD likely a result of outdated SO<sub>2</sub> emissions inventory, and underestimation of removal processes for nitrate





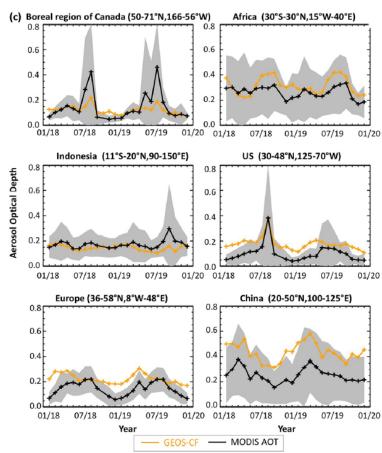
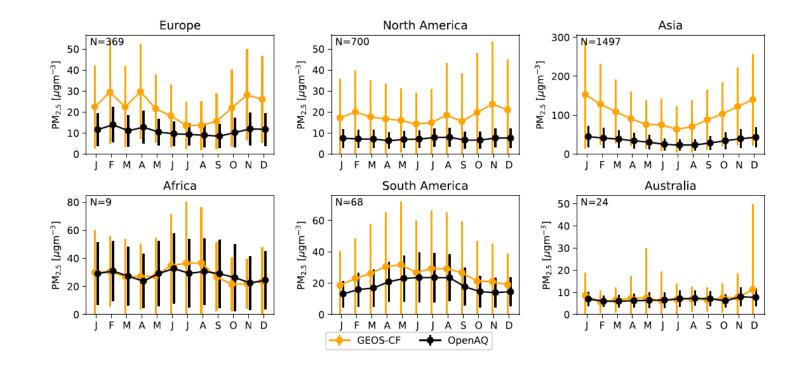
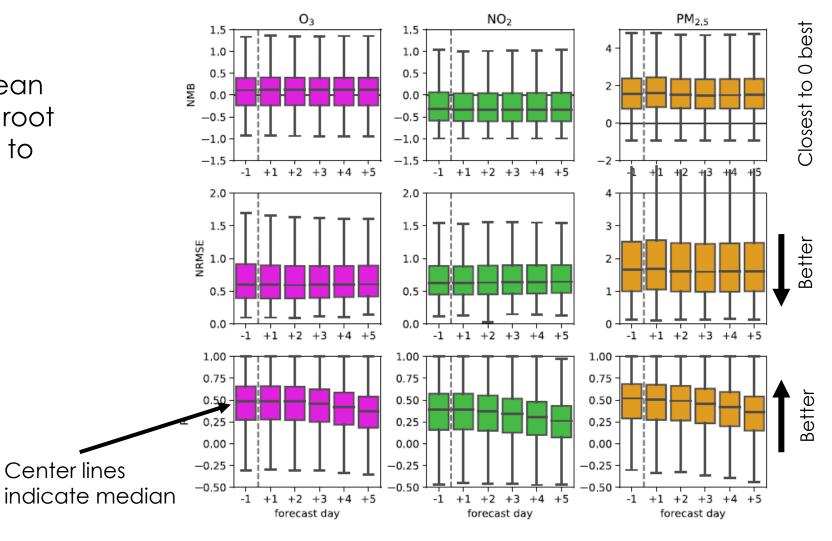




Figure 15 from Keller et al., 2021

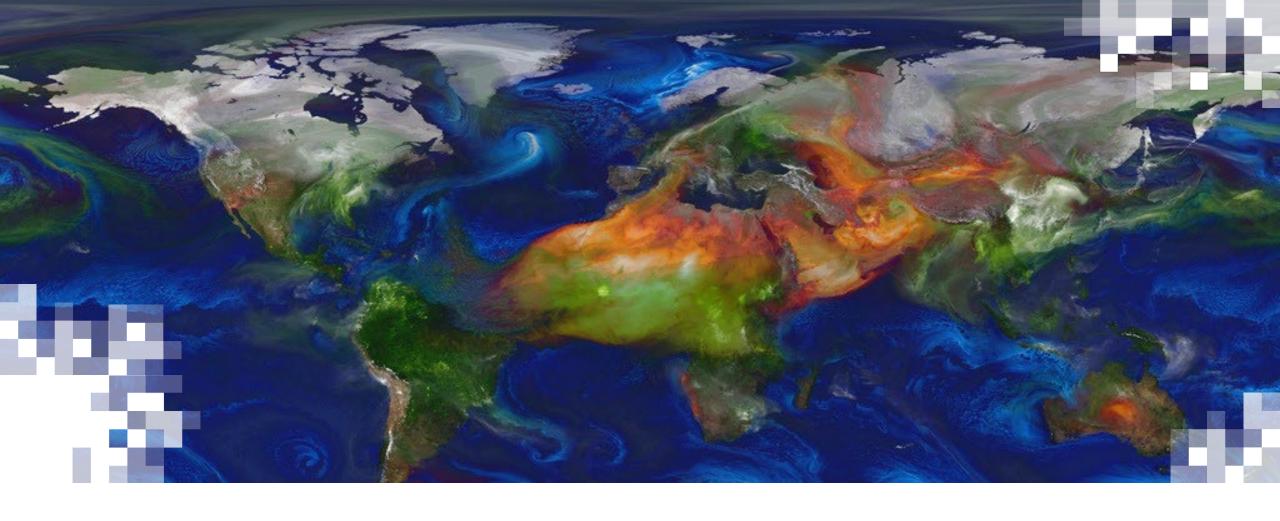


# GEOS-CF Replay Evaluation – $PM_{2.5}$


- Comparison with ~2600 surface PM<sub>2.5</sub> observations from <u>OpenAQ</u>
- Similar results as comparison with AOD
- Even though GEOS-CF has high resolution for a global forecast model, there are still biases when comparing with station-level observations, especially in urban areas






## **GEOS-CF Forecast Evaluation**

5-day forecasts have comparable normalized mean bias (NMB) and normalized root mean square error (NRMSE) to the 1-day replay.





Center lines



MERRA-2

# What is reanalysis, and why do we do it?



#### What:

- A consistent reprocessing of Earth system observations using a modern, unchanging data assimilation system
- Relies on models to interpret, relate, and combine different observations from multiple sources
- Successful reanalysis requires a good forecast model combined with biascorrected and quality-controlled observations

## Why:

- Produces multi-decadal, gridded datasets that estimate a large variety of Earth system variables, including ones that are not directly observed
- Has become fundamental to research and education in the Earth sciences



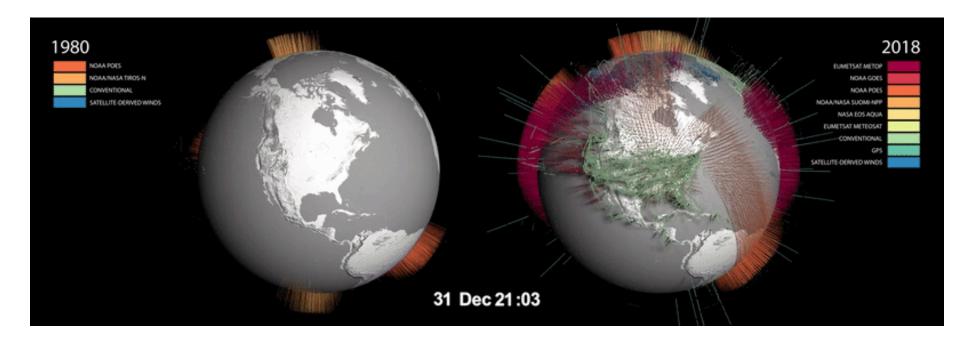
# **MERRA-2** Reanalysis

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/

- The Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) provides data beginning in 1980 and runs a few weeks behind real-time.
- Long-term, model-based analyses of multiple datasets using a fixed assimilation system
- Includes meteorology, stratospheric ozone, and aerosols at the spatial resolution of a  $0.5^{\circ} \times 0.66^{\circ}$  (~50 km) grid.



Source: https://gmao.gsfc.nasa.gov/reanalysis/




# **GEOS Output Quick Guide**

|                        | GEOS FP                                                                                       | GEOS-CF                                                     | MERRA-2                                                      |
|------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|
| Туре                   | Analysis + Forecast                                                                           | Replay + Forecast                                           | Reanalysis                                                   |
| Domain                 | Global                                                                                        | Global                                                      | Global                                                       |
| Spatial Resolution     | Simulation: ~12 km<br>Output: ~25 km (0.25°x0.312°)                                           | ~25 km (0.25°x0.312°)                                       | ~50km (0.5°x0.625°)                                          |
| Temporal Resolution    | 2-D data: Hourly<br>3-D data: Every 3 h                                                       | 15 min, Hourly                                              | Hourly, Daily, Monthly                                       |
| Vertical Levels        | 72 (near surface-0.1 hPa)                                                                     | 72 (near surface-0.1 hPa)                                   | 72 (near surface-0.1 hPa)                                    |
| Output available       | Analysis: 2014 – Present Forecast: 2019 – Present (aqc collection) ~14 days (all collections) |                                                             | 1980-Present                                                 |
| Initialization         | Daily 10-day forecast at 00Z<br>Daily 5-day forecast at 12Z                                   | Daily 5-day forecast at 12Z                                 | ~1-2 months behind real<br>time                              |
| Data Assimilation      | Yes                                                                                           | No                                                          | Yes                                                          |
| File Specification Doc | https://gmao.gsfc.nasa.gov/pubs/docs/L<br>ucchesi1203.pdf *                                   | https://gmao.gsfc.nasa.gov/pubs/docs<br>/Knowland1204.pdf * | https://gmao.gsfc.nasa.gov/pubs/do<br>cs/Bosilovich785.pdf * |

<sup>\*</sup> Find most current File Specification at <a href="https://gmao.gsfc.nasa.gov/pubs/office\_notes.php">https://gmao.gsfc.nasa.gov/pubs/office\_notes.php</a> 43

# **Observing System in MERRA-2**



In 1980, there were few satellites providing observations. These satellites, with global surface and upper-air observations were the first observations used for the beginning of MERRA-2 in 1980. Every 6 hours, a median number of 175,000 observations were assimilated.

Today, our observing system has advanced significantly, and MERRA-2 assimilates a median number of 5 million observations every 6 hours.

## **MERRA-2 Aerosol Observations**

- m
- Aerosol assimilation is described in detail in <u>Randles et al. 2017</u> and <u>https://gmao.gsfc.nasa.gov/pubs/docs/Randles887.pdf</u>.
- In MERRA-2, AOD at 550 nm is assimilated.
- Some notes:
  - No information on vertical structure or composition
  - Daylight observations only
  - Subject to meteorological conditions (e.g., clouds) and viewing geometry (e.g., sun glint)
  - When there are no observations, MERRA-2 draws towards the GEOS/GOCART simulation.

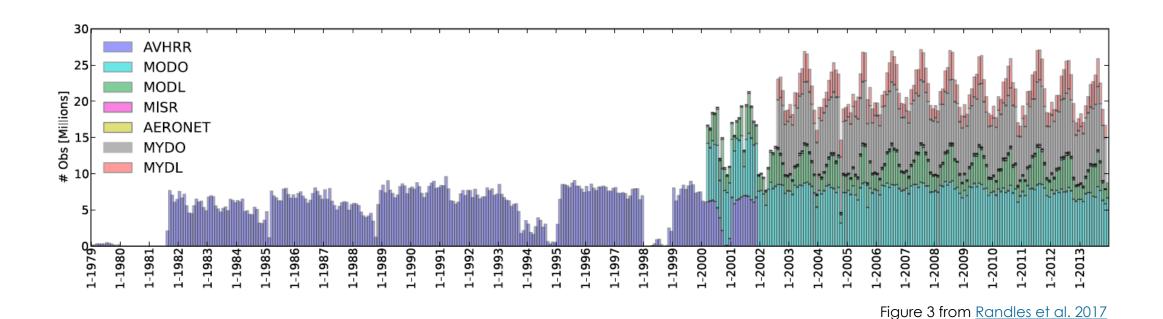

| Sensor          | Temporal coverage                     | Description                                                    |
|-----------------|---------------------------------------|----------------------------------------------------------------|
| AVHRR NNR       | 1980–August 2002                      | PATMOS-x radiances over ocean only (PM orbit)                  |
| AERONET         | Station dependent (1999–October 2014) | AOD from land station network                                  |
| MISR            | February 2000–June 2014               | AOD over bright land surfaces only (albedo $> 0.15$ )          |
| MODIS Terra NNR | March 2000 onward (NRT)               | Collection 5 "Dark Target" land and ocean radiances (AM orbit) |
| MODIS Aqua NNR  | August 2002 onward (NRT)              | Collection 5 "Dark Target" land and ocean radiances (PM orbit) |

Table 2 from Randles et al. 2017



## **MERRA-2 Aerosol Observations**





 When using MERRA-2 products, one must take care to consider the changing observing system over time.



## **GOCART in MERRA-2**

- Goddard Chemistry, Aerosol, Radiation and Transport Model (GOCART, Chin et al. 2002, Colarco et al. 2010)
- Sources and sinks for 5 <u>non-interactive</u> species
- Radiatively active

Wind and topographic sources, 5 mass bins


Wind-driven source, 5 mass bins

Anthropogenic and wildfire sources, mass hydrophobic & hydrophilic

Anthropogenic, biogenic, and fire sources, mass hydrophobic and hydrophilic

Anthropogenic and wildfire sources of SO<sub>2</sub>, oxidation to SO<sub>4</sub> mass

There are no nitrate aerosols in MERRA-2.





## **Emissions in MERRA-2**

| Aerosol type                                             | Source                                                                    | Description                                                                    |
|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Dust                                                     | Wind-driven                                                               | Static topographic depression source map (0.3125° × 0.25°; Ginoux et al. 2001) |
| Sea salt                                                 | Wind-driven                                                               | See section 2b                                                                 |
| Volcanic SO <sub>2</sub>                                 | AeroCom Phase II (HCA0 v2; Diehl et al. 2012)                             | Daily degassing and eruptive volcanos (1980–2010)                              |
| Biogenic terpene                                         | Guenther et al. (1995)                                                    | Monthly mean climatology $(2^{\circ} \times 2.5^{\circ})$                      |
| Dimethyl sulfide (DMS) and<br>methanesulfonic acid (MSA) | Lana et al. (2011)                                                        | Monthly mean climatology $(1^{\circ} \times 1^{\circ})$                        |
| Biomass burning                                          | Scaled RETROv2 (Duncan et al. 2003)                                       | Monthly mean varying (1980–96; $0.3125^{\circ} \times 0.25^{\circ}$ )          |
| SO <sub>2</sub> , SO <sub>4</sub> , POM, and BC          | Scaled GFEDv3.1 (Randerson et al. 2006)                                   | Monthly mean varying $(1997-2009; 0.3125^{\circ} \times 0.25^{\circ})$         |
|                                                          | QFED 2.4-r6                                                               | Daily (2010 onward; $0.3125^{\circ} \times 0.25^{\circ}$ )                     |
| Anthropogenic SO <sub>2</sub>                            | EDGARv4.2 (energy + non-energy) (European Comission 2011)                 | Annually varying (1980–2008; 0.1° × 0.1°)                                      |
| Anthropogenic SO <sub>4</sub> , BC, and POM              | AeroCom Phase II (HCA0 v1; Diehl et al. 2012)                             | Annually varying (1980–2006; $1^{\circ} \times 1^{\circ}$ )                    |
| International ships (SO <sub>2</sub> )                   | EDGARv4.1 (European Commission 2010)                                      | Annually varying (1980–2005; $1^{\circ} \times 1^{\circ}$ )                    |
| International ships (SO <sub>4</sub> , POM, BC)          | AeroCom Phase II (HCA0 v1; Diehl et al. 2012)<br>and Eyring et al. (2005) | Annually varying (1980–2007; $1^{\circ} \times 1^{\circ}$ )                    |
| Aircraft (SO <sub>2</sub> )                              | AeroCom Phase II (HCA0 v1; Diehl et al. 2012)                             | Monthly varying (1980–2006; $1^{\circ} \times 1.25^{\circ} \times 72$ levels)  |

Randles et al., 2017



### **MERRA-2 File Collections**

- MERRA-2 outputs are organized into file collections that contain related variables.
- These have the form:

Frequency\_Dimensions\_Group\_HV

#### **Frequency**

Frequency or averaging interval

- const = timeindependent
- inst = instantaneous
- tavg = time-average
- Stat = statistics

Can be 1, 3, 6-hourly, daily (D), monthly (M), or a monthly-diurnal mean (U)

#### Group

Three letter abbreviation for the type of variables

- These are also used in the short name
- Ex. aer = Aerosol fields
- See documentation for full list

#### **Dimensions**

Dimensions of variables

- 2d = only 2d fields
- 3d = can have 2d and 3d

#### HV

Horizontal and vertical grid

- H = typically N, for nominal grid
- V = x, horizontal only
- V = p, pressure level
- V = v, model level
- V = e, model layer edges



## **MERRA-2 File Names**



Each MERRA-2 file has the form:

MERRA2\_SVv.collection.timestamp.nc4

#### **Stream and Version**

File version (usually 100, 200, 300, or 400)

#### Collection

See previous slide

All MERRA-2 output files are in NetCDF-4 format.

#### **Timestamp**

Date and time of data file

- For instantaneous or time-averaged files: yyyymmdd
- For monthly files: yyyymm

For collections with instantaneous or timeaveraging frequency < 1 day, the daily file will contain all of the timesteps



## **Example MERRA-2 File Name**



MERRA2\_400.tavgM\_2d\_aer\_Nx.202106.nc4

- MERRA2 400 MERRA-2 file from fourth assimilation stream
- tavgM\_2d\_aer\_Nx 2D monthly time-averaged ("tavgM\_2d") aerosol species collection ("aer") on the horizontal grid ("Nx")
- 202106 This file contains monthly averages for June 2021



## **AQ-Relevant Collections and Variables**

https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf \*

| Collection Name | Description                                                                                                                                       |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| tavg1_2d_aer_Nx | Aerosol Diagnostics Optical properties (Extinction AOT, Scattering AOT, Angstrom parameter) Surface concentration (kg/m³), Column Density (kg/m²) |
| tavg1_2d_adg_Nx | Aerosol Diagnostics (extended) Emissions and removal processes (deposition, sedimentation, and scavenging)                                        |
| tavg1_2d_chm_Nx | 2D time-averaged chemistry diagnostics Surface CO, column CO, emissions, chemical loss, chemical production, total column $O_3$                   |
| inst3_3d_aer_Nv | 3D instantaneous aerosol diagnostics<br>Mass mixing ratios (kg/kg) of aerosol species in each size bin                                            |
| inst3_3d_chm_Nv | 3D instantaneous chemistry diagnostics CO molar mixing ratio (mol/mol), $O_3$ (not for use in scientific analysis)                                |

To calculate  $PM_{2.5}$ , use the formula:

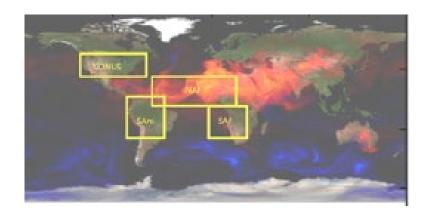
 $PM_{2.5} = [DUSMASS25] + [SSSMASS25] + [BCSMASS] + 1.4 \times [OCSMASS] + 1.375 \times [SO4SMASS]$ 

These variables are contained in the tavg1\_2d\_aer\_Nx collection

ogram

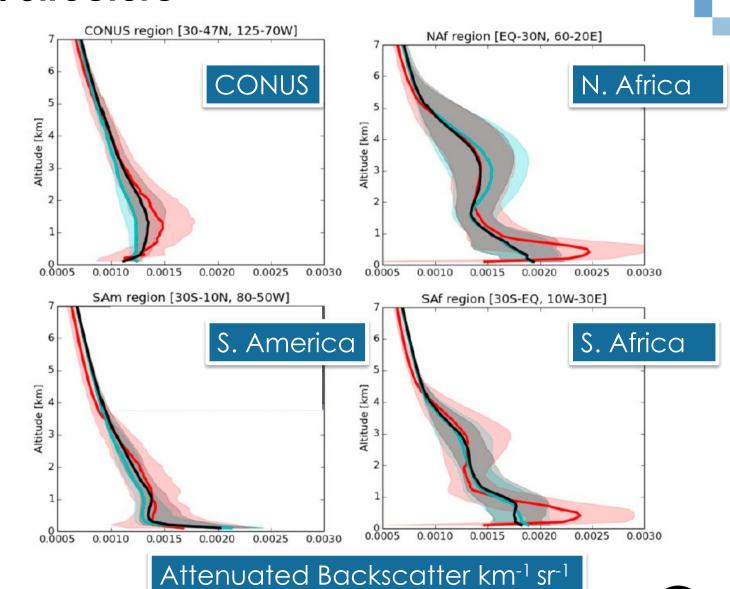





## **MERRA-2 Evaluation**



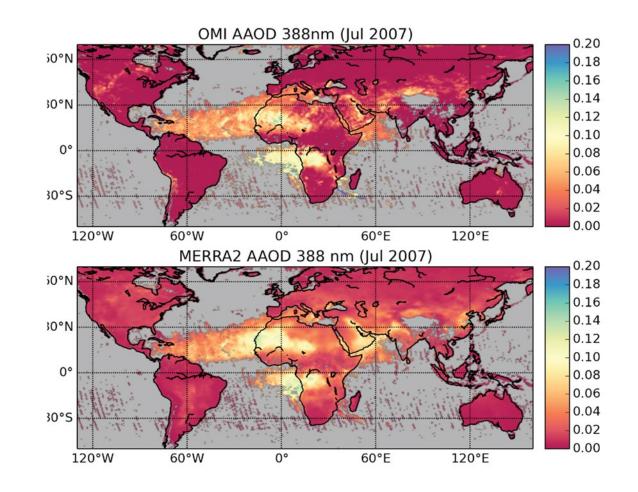
- In order to evaluate the performance of a reanalysis, it is important to compare the output with independent sources of data (i.e., those not used for assimilation).
- A detailed evaluation of MERRA-2 aerosols can be found in <u>Buchard et al. (2017)</u>.
  - Optical properties, vertical distribution, and surface  $PM_{2.5}$




## MERRA-2 Evaluation: Vertical Structure

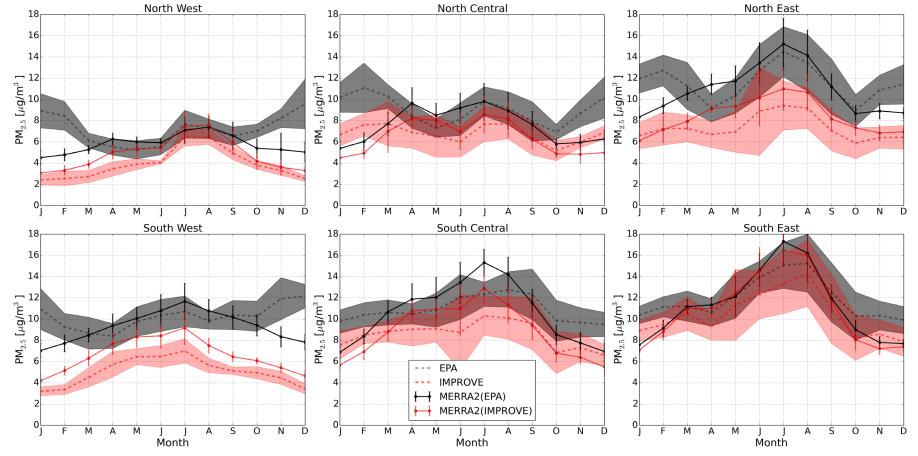


CALIOP observations
Model without AOD assimilation
MERRA-2


Assimilating AOD improves the vertical distribution of aerosols with respect to daytime lidar observations





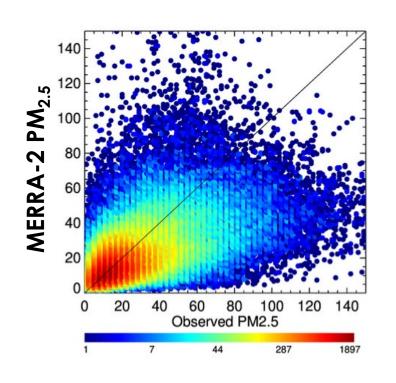

## **MERRA-2 Evaluation: Aerosol Absorption**

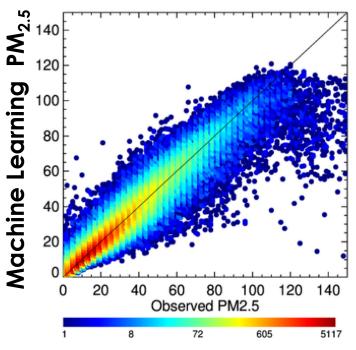
- Comparison of MERRA-2
   Absorption Optical Depth (AAOD)
   with OMI retrievals
- Good agreement for African dust and smoke
- North American biomass burning underestimated according to OMI

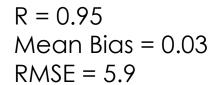




# MERRA-2 Evaluation: Regional PM<sub>2.5</sub> Climatology




# Case Study: MERRA-2 as a Dataset for Machine Learning

- In a very recent study, <u>Gupta</u>
   et al. (2021) use MERRA-2
   output, along with ground
   observations of PM2.5 to train
   a machine learning model to
   predict PM<sub>2.5</sub> in Thailand
- The machine learning predicted PM2.5 shows better correlation and reduced bias with respect to observations
- This algorithm can be used to bias correct the entire MERRA-2 time period, creating a more accurate long-term dataset for this region





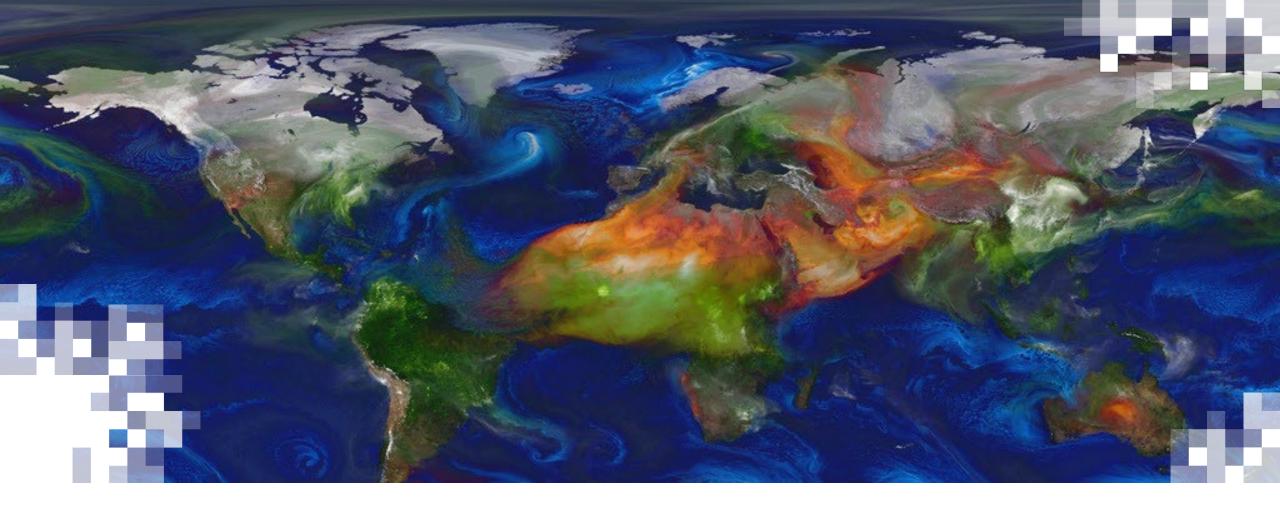






### References

#### GOCART


- Chin, M., P. Ginoux, S. Kinne, O. Torres, B. Holben, B. Duncan, R. Martin, J. Logan, A. Higurashi, and T. Nakajima (2002), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, J. Atmos. Sci., 59(3), 461–483. <a href="https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2">https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2</a>
- Colarco, P., A. Da Silva, M. Chin, and T. Diehl (2010), Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth, J. Geophys. Res.-Atmos., 115, –, doi:10.1029/2009JD012820. https://doi.org/10.1029/2009JD012820
- Liu, F. et al. (2018). A new global anthropogenic SO2 emission inventory for the last decade: A mosaic of satellite-derived and bottom-up emissions https://doi.org/10.5194/acp-18-16571-2018
- Janssens-Maenhout, G. et al. (2015). HTAP\_v2.2: A mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution <a href="https://doi.org/10.5194/acp-15-11411-2015">https://doi.org/10.5194/acp-15-11411-2015</a>
- Ginoux, P. et al (2001) Sources and global distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., https://doi.org/10.1029/2000JD000053
- Carn, S. (2019). Multi-satellite volcanic sulfur dioxide L4 long-term global database V3. https://doi.org/10.5067/measures/so2/data404

#### GEOS-CF

- Keller et al. (2021) Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0, <a href="https://doi.org/10.1029/2020MS002413">https://doi.org/10.1029/2020MS002413</a>
- File Specification Document <a href="https://gmao.gsfc.nasa.gov/pubs/docs/Knowland1204.pdf">https://gmao.gsfc.nasa.gov/pubs/docs/Knowland1204.pdf</a>

#### GEOS FP

- Reinecker et al. (2008), The GEOS-5 Data Assimilation System Documentation of Versions 5.0.1, 5.1.0, and 5.2.0,
- File Specification Document <a href="https://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi1203.pdf">https://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi1203.pdf</a>
- MERRA-2 <a href="https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/">https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/</a>
  - File Specification Document <a href="https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf">https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf</a>
  - Aerosol Assimilation Technical Document <a href="https://gmao.gsfc.nasa.gov/pubs/docs/Randles887.pdf">https://gmao.gsfc.nasa.gov/pubs/docs/Randles887.pdf</a>
  - Randles et al. (2017) The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation https://journals.ametsoc.org/view/journals/clim/30/17/jcli-d-16-0609.1.xml
  - Buchard et al. (2017) The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies <a href="https://journals.ametsoc.org/view/journals/clim/30/17/jcli-d-16-0613.1.xml">https://journals.ametsoc.org/view/journals/clim/30/17/jcli-d-16-0613.1.xml</a>



GMAO Fluid Website Demo



# Thank You!

