

Understanding and Obtaining NASA Data Products Through POWER

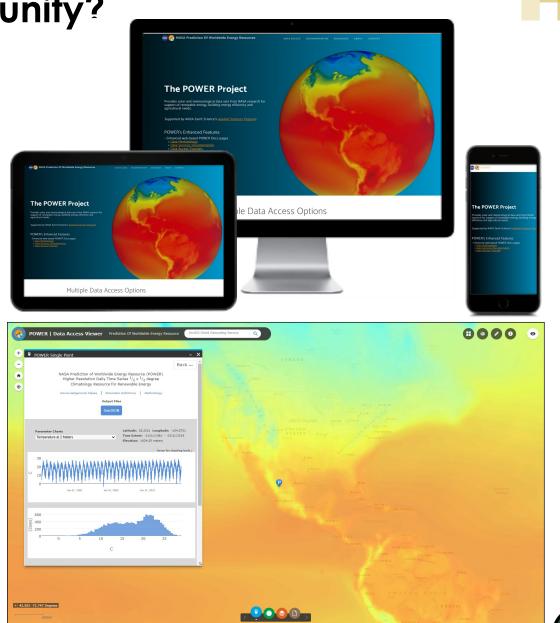
Collaboration between NASA POWER and NASA ARSET

June 15, 2021

What is POWER?

What is POWER's Purpose?

- POWER stands for "Prediction of Worldwide Energy Resources" project funded by NASA to help facilitate the usage of NASA Earth observations, analysis, and modeling to answer key societal questions.
- POWER aims to improve the nation's ۲ public/private capability for integrating environmental data from NASA Earth observations and research, particularly surface solar irradiance, to support increased:
 - renewable energy development,
 - building energy efficiency and sustainability, and
 - agroclimatology applications.


Credits: nrdc.org, solvay.com, harvestreturns.com

What is POWER's role in the community?

POWER supports the community with:

- Public, open discovery, efficient access, and convenient distribution of NASA Earth Observations data through an integrated services suite.
- Societal benefit area-specific content guided by interaction with and feedback from professional community members and organizations.
- Key partnerships with scientific data providers and user groups providing actionable and community feedback for improved future data products.

What questions can be answered with Earth Observations made available through POWER Web Services?

- What is typical variability of the sunlight, temperature, and winds over the past 25-30 years in a region?
- What is the anticipated level of production for an installed photovoltaic (PV) field? Is there an optimal tilt angle that considers cloud patterns?
- Is this regional area potentially suitable for wind power generation?
- How can we understand the variability of building environment climate parameters needed to determine current and future building standards?

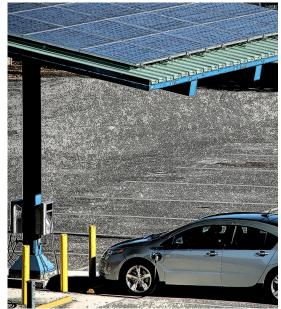


Photo Credit: NASA Technology Transfer Program

4

What questions can be answered with Earth Observations made available through POWER Web Services?

- How can we determine if incorporating renewable technologies makes sense from an environmental and economic perspective?
- Can I monitor the performance of my building and see if retrofitting renewable technologies is feasible and afterwards effective?
- How can I introduce a class to the principles and effectiveness of implementing solar technologies anywhere in the world?

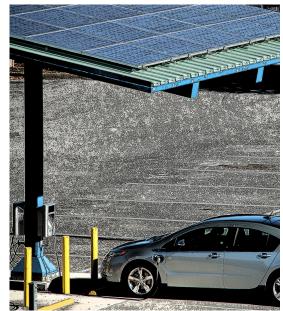
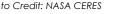
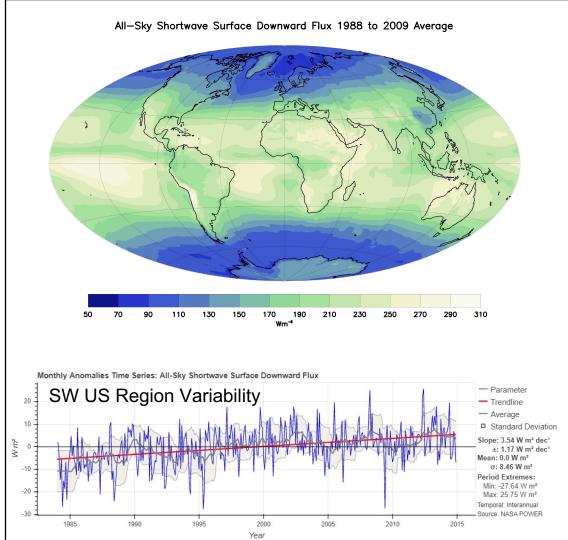
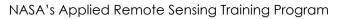



Photo Credit: NASA Technology Transfer Program


What information does the community need to answer those and other questions?


Among the most widely needed data are long records to near real-time of:

- Sunlight Information: Solar irradiance and related components (i.e., direct, diffuse, solar angles, surface albedo)
- Surface Temperature and Humidity (max and min T, dewpoint, RH, etc.)
- Wind Speed and Direction
- Cloud Coverage, Thickness, and Type

Time series of parameters are needed including:

- Hourly, Daily, Monthly, Annual
- Long-Term Averages

What NASA EOs can provide these data parameters?

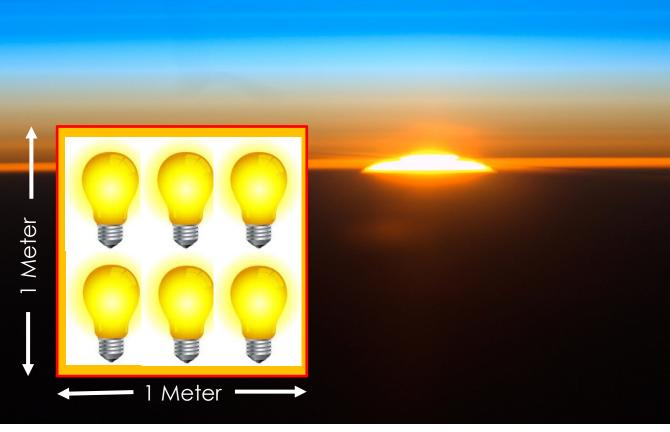
The POWER Data Archive uses NASA research and modeling data products plus value added data processing and services to customize parameters for community use.

Current POWER version at: https://power.larc.nasa.gov

<u>Course</u>	Temporal Span		T	emporal Average	Description					
Source	Start	End	Input	Output	Description					
GEWEX SRB 3.0	July 1, 1983	Dec. 31, 2007	Daily	Daily, Monthly, Annual, Multi-Year	Satellite analysis from global cloud imagers (from geosynchronous and polar orbiting satellites) using radiative transfer lookup tables					
<u>CERES FLASHFlux</u>	End of SRB Rel 3	Near Real- Time	Daily	Daily, Monthly, Annual , Multi-Year	Satellite analysis of CERES (reflected solar) and MODIS (cloud imager) measurements (on Terra and Aqua satellites)					
MERRA-2	Jan. 1, 1981	End of MERRA-2 (current)	Hourly	Daily, Monthly, Annual, Multi-Year	Atmospheric reanalysis with assimilated observations (1-2 months behind real-time)					
<u>Gmao fp-it</u> (<u>Geos 5.12.4</u>)	End of MERRA-2	Near Real- Time	Hourly	Daily, Monthly, Annual, Multi-Year	Atmospheric reanalysis with less assimilated observations, available within 2 days of real-time					
	SURFACE RADIATIC BUDGET		CE	RES	FLASHFIUX					

What NASA EOs can provide these data parameters?

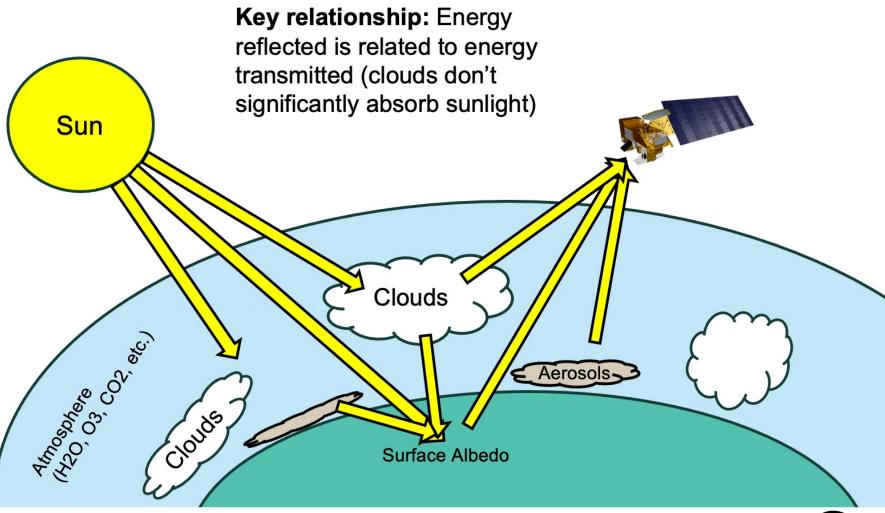
The POWER Data Archive uses NASA research and modeling data products plus value added data processing and services to customize parameters for community use.


Red indicates changes for POWER Beta web site: <u>https://power.larc.nasa.gov/beta</u>

Source	Temporal Span		T	emporal Average	Description						
Source	Start	End	Input	Output	Description						
GEWEX SRB 4.0	July 1, 1983	Dec. 31, 200 <mark>0</mark>	Daily	Daily, Monthly, Annual, Multi-Year	Satellite analysis from global cloud imagers (from geosynchronous and polar orbiting satellites) using radiative transfer lookup tables						
CERES SYN1Deg (Ed 4A)	Jan 1, 2001	End of SYN1Deg (current)	Hourly	Hourly, Daily, Monthly, Annual, Multi-Year	Satellite analysis from CERES convolved with MODIS for scene and TOA fluxes, then uses radiative transfer with additional input from geosynchronous satellites and other inputs to produce surface fluxes						
CERES FLASHFlux	End of SYN1deg (current)	Near Real Time	Daily	Daily, Monthly, Annual , Multi-Year	Satellite analysis of CERES (reflected solar) and MODIS (cloud imager) measurements (on Terra and Aqua satellites)						
MERRA-2	Jan. 1, 1981	End of MERRA-2 (current)	Hourly	Hourly, Daily, Monthly, Annual, Multi-Year	Atmospheric reanalysis with assimilated observations (1-2 months behind real-time)						
<u>GMAO FP-IT</u> (<u>GEOS 5.12.4</u>)	End of MERRA-2	Near Real Time	Hourly	Hourly, Daily, Monthly, Annual, Multi-Year	Atmospheric reanalysis with less assimilated observations, available within 2 days of real-time						
	SURFACE RADIATIC BUDGET		CE	RES	FLASHFIUX						

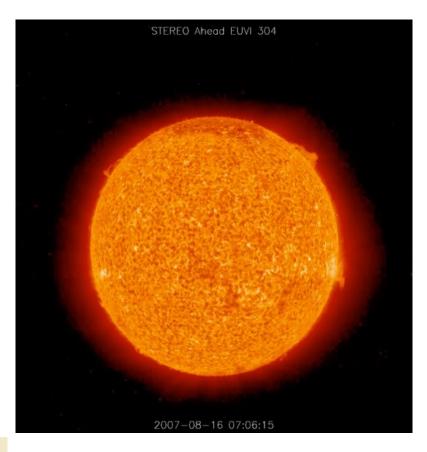
What is solar irradiance?

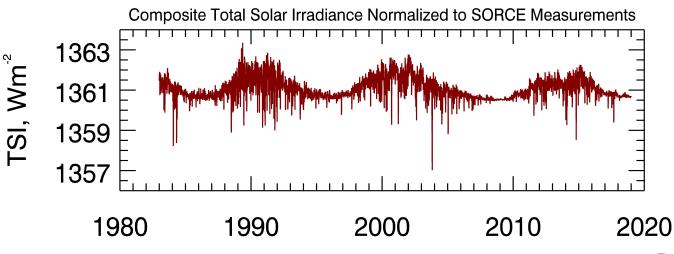
- Solar irradiance is the rate at which solar energy falls onto a surface, per unit area. The units are power per area: Watts per square meter, abbreviated as W/m².
- Solar irradiance is transmitted through the atmosphere and is vital for understanding climate variability and surface heating.
- Surface solar irradiance is an important factor in the sizing of both solar panels and battery backup systems, solar cooking applications, and building design.


Did you know?: The amount of sunlight that reaches the Earth's atmosphere is equal to approximately 6 60W light bulbs for every square meter of the surface (~341 W/m²).

How is surface solar irradiance calculated from Earth observations?

Need to know the:

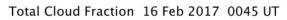

- Amount energy that comes from the sun
- Total received energy for various satellite sensors
- Concentration of atmospheric gases that absorb and scatter light (H2O, O3, CO2, etc.)
- Amount, thickness, and type of clouds and aerosols that reflect, absorb and scatter light
- Reflective nature of the surface (i.e., albedo)

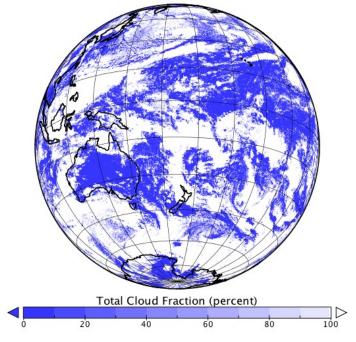

Estimating solar irradiance at the surface starts at the top!

First, measure the energy from the Sun received at the Top Of Atmosphere (TOA) Total Solar Irradiance (TSI).

NASA's SORCE Mission is now replaced by TSIS-1 on board the ISS.

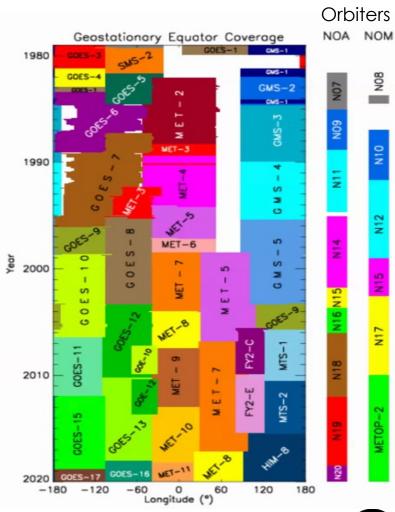
SORCE = SOlar Radiation Climate and Experiment; TSIS = Total and Spectral Solar Irradiance Sensor; ISS = International Space Station


NASA's Applied Remote Sensing Training Program


11

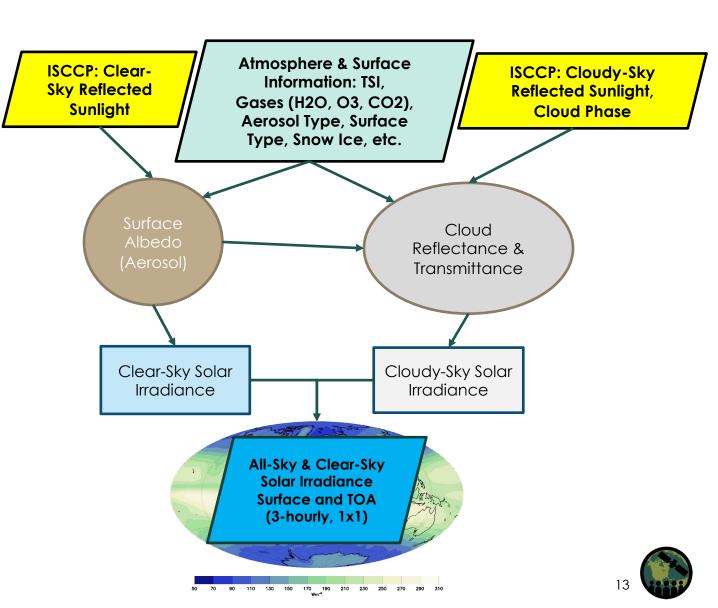
GEWEX Surface Radiation Budget Project (SRB): Start with Clouds

Obtain 3-hourly Global Cloud Properties from World's GEO and LEO Imagers


 International Satellite Cloud Climatology Project (ISCCP)

(A global cloud composite example, complements of LaRC SatCORPS for DSCOVR Satellite Mission)

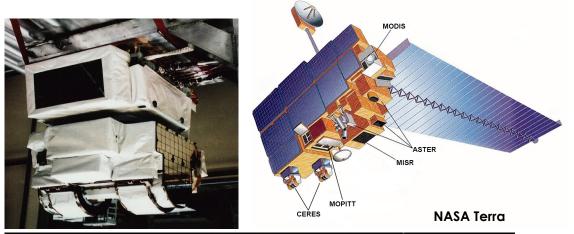
- Multi-satellite imager data crosscalibrated together from both
- geosynchronous (GEO) and low earth orbit (LEO)
- Satellite visible reflectance/therm al infrared emission, cloud and surface reflectance information output
 Processed globally
 - every 3 hours from July 1984

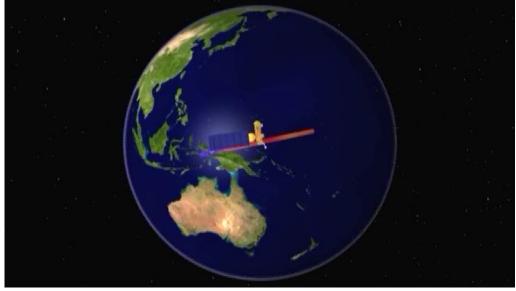

Courtesy NOAA NCEI (K. Knapp)

Polar

GEWEX SRB: Compute the Surface Solar Irradiance

- ISCCP satellite products provide measured reflected sunlight for clear and cloudy skies: cloud detection and phase.
- Other ancillary information including TSI, gases, aerosols, surface types, etc. is input.
- The GEWEX shortwave (SW) model uses an iterative technique to infer the clear and cloudy sky solar irradiance.
 - Estimates albedo from clearsky using aerosol information
 - Estimates cloud reflectance and transmission of sunlight
 - Computes fluxes given time and location

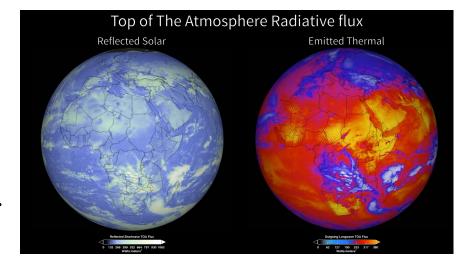

CERES Top-of-Atmosphere Measurements

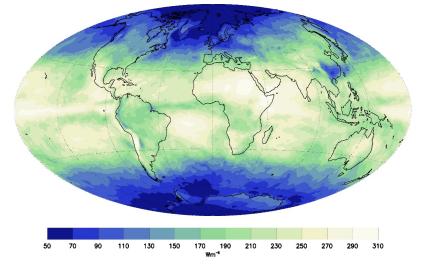


Clouds and Earth's Radiant Energy System (CERES) Starting in 2000

- CERES measures reflected solar and emitted thermal infrared energy at the top-of-atmosphere to:
 - Monitor balance of energy
 - Determine effects of clouds on climate
 - Much higher accuracy and stability
- CERES flies on satellites with imagers used to produce cloud properties (like ISCCP H) but has far better resolution and more spectral channels.
 - Terra (AM overpass): MODIS*
 - Aqua (PM overpass): MODIS
 - NPP (PM overpass): VIIRS**
 - NOAA-20 (PM overpass): VIIRS

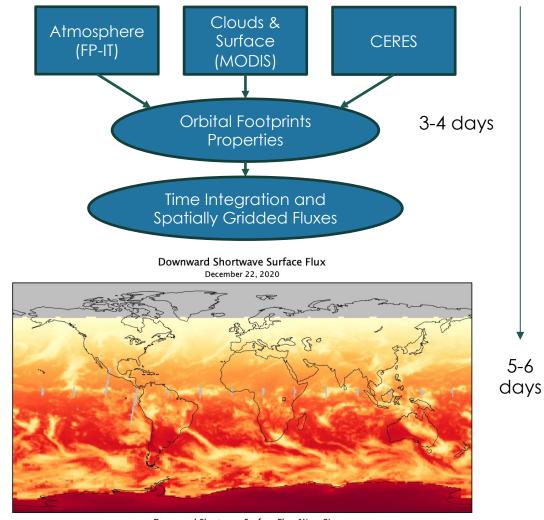
*MODIS = MODerate resolution Imaging Spectrometer **VIIRS = Visible Infrared Imaging Spectrometer NASA's Applied Remote Sensing Training Program





CERES Surface Solar Irradiance: SYN1Deg Data Products

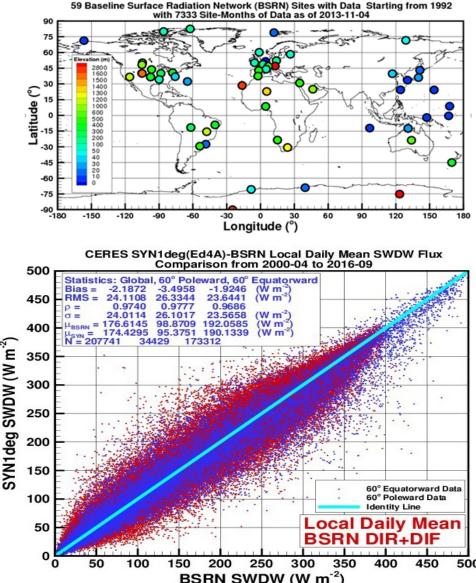
- Computed fluxes from CERES SYN1Deg (synoptic 1°x1°) are produced using a radiative transfer model with MODIS and geosynchronous satellitederived cloud properties.
- SYN1Deg provides hourly surface solar irradiance from March 2000 to within a few months of present.
- SYN1Deg products incorporate:
 - Terra/Aqua using CERES instruments with fused MODIS
 - GEO properties cross-calibrated to MODIS supplement
- Other key inputs include TSI, NSIDC Ice/Snow, surface types, NASA atmospheric reanalysis properties (3D temperature, humidity, ozone), aerosol optical properties, and surface albedo



CERES SYN1Deg Surface Solar Irradiance Average

CERES Near-Real Time: FLASHFlux Data Products

- Due to the needs of POWER data users for the most up-to-date solar irradiance data available, a second CERES Product, FLASHFlux, is utilized.
 - FLASHFlux uses the same inputs as SYN1deg but faster with a target latency of 7 days.
 - Data product quality is assessed independently for each source.
 - Day-to-day variability is sufficiently consistent for applications.
 - For the Beta, FLASHFlux data are overwritten with climate quality SYN1deg as soon as the data are available.

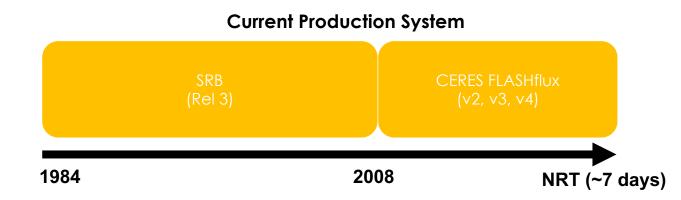


CERES FLASHFlux

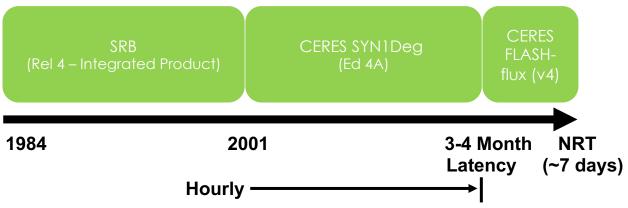
How do we determine solar irradiance data quality?

- Solar irradiance data quality can be evaluated through:
 - Validation by comparison to surface measurements from networks like BSRN, ARM, and GEBA.
 - Ensemble and time averaged statistics are calculated.
 - Comparisons to other datasets such as CERES compared to SRB and/or to other independent data sets.
- See "Methodology Documentation" pages for more information and statistics

https://power.larc.nasa.gov/docs/methodology/solar/



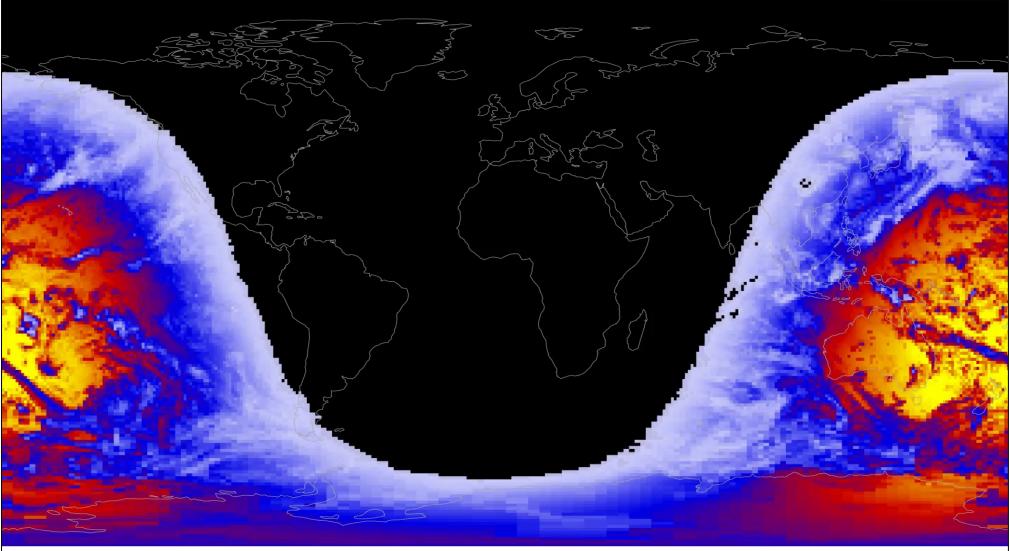
Time Span of POWER Solar Data Products


- Current Version:
 - Daily solar data products from 1984 provided through 7 days of real-time
 - SRB Rel 3 to CERES FLASHFlux (v4A)
 - MERRA-2 to FP-IT

New Version Production System:

- Daily solar data products from 1984 provided through 7 days of real-time
- SRB to CERES SYN1Deg, to FLASHFlux
- Hourly from 2001 through 3-4 months of observation
- MERRA-2 to FP-IT

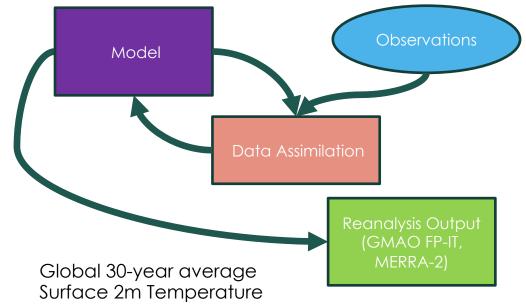
New Version Production System (in Beta)

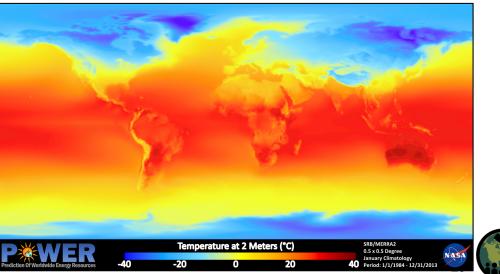


Interpret long time series with caution due to concatenation of data products.

Daily Solar Irradiance – Hourly Video

All Sky Surface Shortwave Downward Irradiance: 2001-01-01 00:00 (UTC)




Where can we obtain surface meteorological parameters?

NASA's Global Modeling and Assimilation Office (GMAO) Data Products

What is an atmospheric data assimilation?

- Global atmospheric models run iteratively.
 - Model 6hr forecasts are adjusted within thresholds to observations
 - Model forecasts rerun to produce products
- GMAO produces:
 - Near real-time (FP-IT; 2 days)
 - Long-term MERRA-2 (Modern Era Retrospective analysis for Research and Applications)
- MERRA-2 has assimilated 50 Billion observations over 40 years.

What sorts of observations are assimilated?

- Surface measurements including:
 - Weather Stations and Buoys, Ships
- Airborne on radiosondes
 and commercial aircraft
- Satellites (large variety):
 - Spectral imagers
 - Microwave instruments
 - Atmospheric sounders
 - GPS occultation

https://svs.gsfc.nasa.gov/search/?search=mccarty

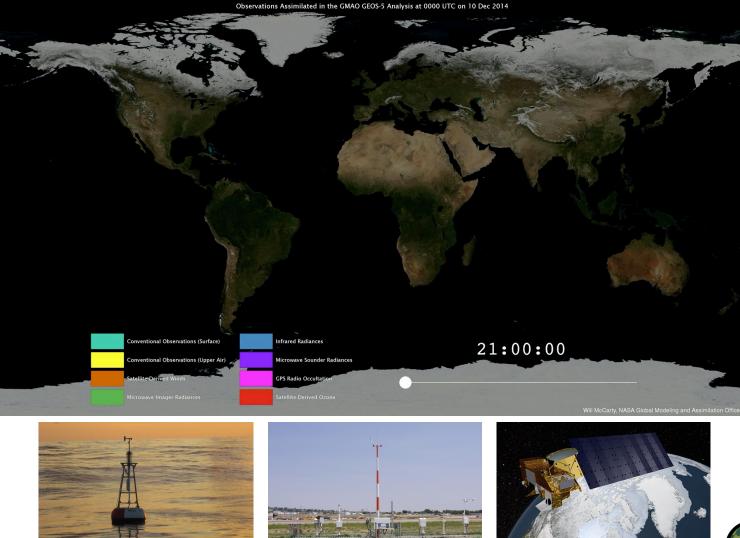


Photo Credit: NOAA PMEL

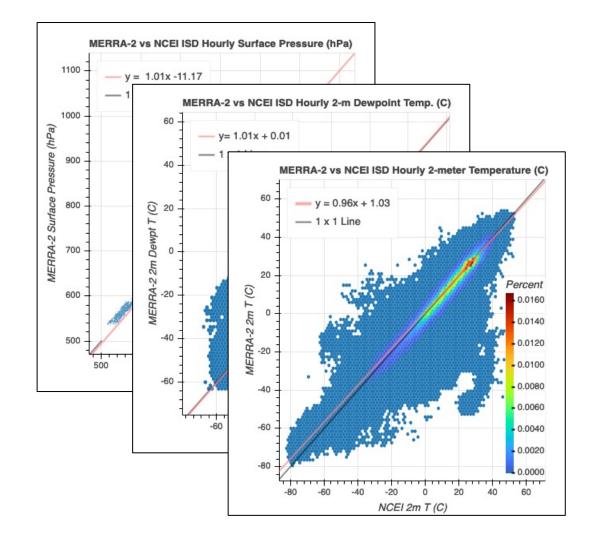
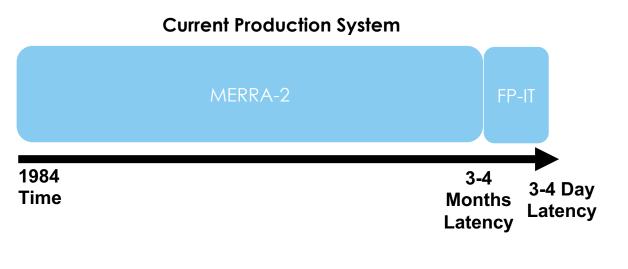

Photo Credit: wiki commons by Famartin

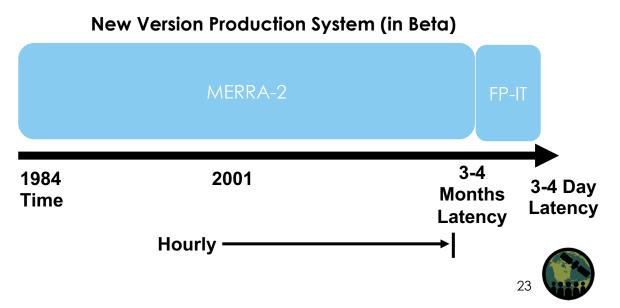
Photo Credit: NASA Aqua

21

How do we determine MERRA-2 data quality?

- The POWER Project conducts additional parameter data validation for basic parameters with the National Oceanic and Atmospheric Administration (NOAA) National Center for Environmental Information (NCEI) surface measurements:
 - Global Summary of the Day (GSOD) for daily validation
 - Integrated Surface Database (ISD) for hourly validation
- Producing histograms and scatterplots conducted by month and surface type produced in 4-year blocks and both aggregated and site-specific static reports/histograms


https://power.larc.nasa.gov/docs/methodology/meteorology/



Time Span of POWER Surface Meteorological Data Products

Current Production System:

- Meteorological products from MERRA-2 begin Jan 1984 (with solar) to 3-4 months of real-time
- Near real-time is from a separate assimilation called FP-IT (Forward Processing-Instrument Team)
 - Subset of the parameters for optimization
 - No precipitation adjustments implemented like MERRA-2
 - Available via POWER at 3-4 days latency
- New Version Production System (Now Beta):
 - Same as above except:
 - Hourly from Jan 2001 through Long-Term data replaces FP-IT with MERRA-2
 - FP-IT to be replaced by new version within the next year; MERRA-2 within 3-4 years
 NASA's Applied Remote Sensing Training Program

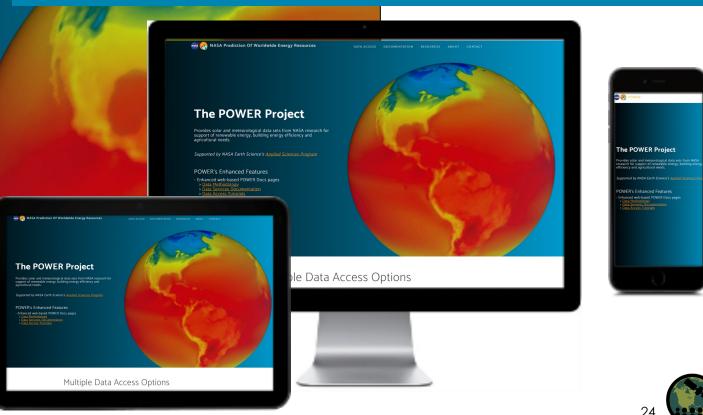
Introduction POWER Web Services Portal

NASA Prediction Of Worldwide Energy Resources

The POWER Project

Provides solar and meteorological data sets from NASA research for support of renewable energy, building energy efficiency and agricultural needs.

Supported by NASA Earth Science's Applied Sciences Program


POWER's Enhanced Features

- Enhanced web-based POWER Docs pages
 - > Data Methodology
- > Data Services Documentation
- > Data Access Tutorials

https://power.larc.nasa.gov

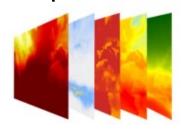
An interface to obtain and utilize global, long-term solar and surface meteorological resource data.

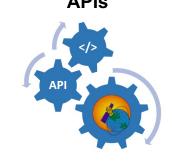
Scalable to any device!

NASA's Applied Remote Sensing Training Program

POWER Data Access Methods

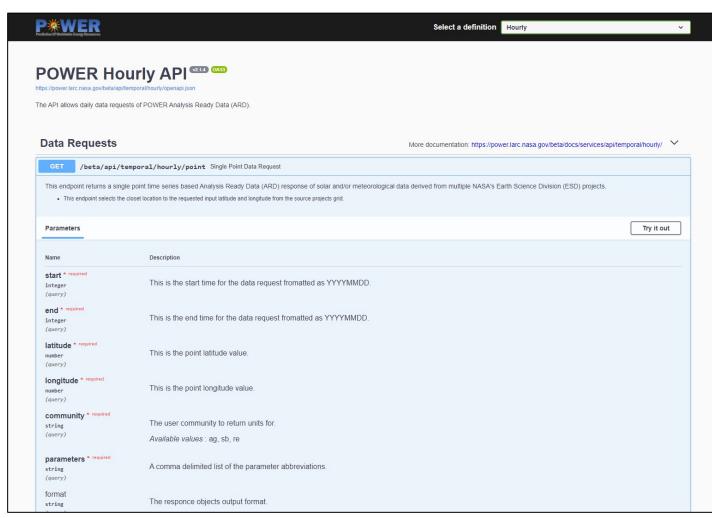
POWER enhances data discovery, access, and distribution as Analysis Ready Data (ARD) for direct application of inputs to decision to support tools, modeling and forecasting packages, and as inputs to scientific research is provided via three basic services:


<u>API:</u> The RESTful Application Programming Interfaces (API) through a single endpoint (i.e., formatted URL string); delivery directly though user browser and/or application.


Data Access Viewer (DAV): The DAV provides a web map with a simple user interface via widgets that allow users to select community specific parameters, units, time periods, and the output formats (invokes the API).

<u>ArcGIS</u>: The RESTful Esri® ArcGIS® Image and Feature Services that support geospatially-enabled data distribution for direct use in Geographic Information System (GIS) and related tools.

Data Access Viewer



What does the POWER Application Programming Interface (API) do?

The POWER API delivers Analysis Ready Data (ARD) for inputs to decision support tools, modeling and forecasting packages, and as inputs to scientific research by providing:

- Complete access to the entire database without any other services.
- Direct integration into external applications; users can submit a request and a response will be returned without leaving their application!
- User specified subsets converted into user community specific units and provides formats like ASCII, ICASA, CSV, GeoJSON, NetCDF, and more!

What is the POWER Application Programming Interface (API)?

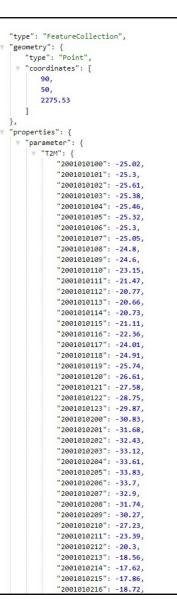
Example Temporal API Requests

Hourly Point API Request URL

Daily Point API Request URL

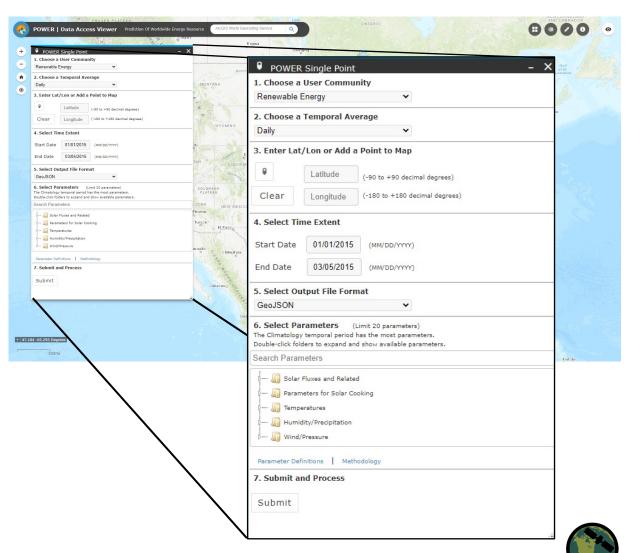
Monthly Point API Request URL

Climatology Point API Request URL

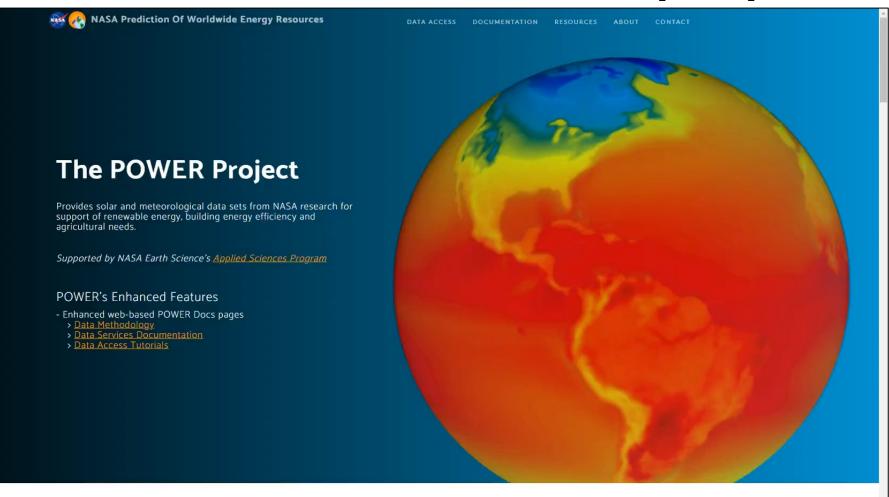

Example for Daily API

Uniform Resource Locator (URL): https://power.larc.nasa.gov/beta/api/temporal/daily/point

Uniform Resource Identifier (URI):


?start=20010101&end=20011231&latitude=50&longitude=50&community=sb¶meter s= T2M,ALLSKY_SFC_SW_DWN

https://power.larc.nasa.gov/beta/api/temporal/daily/point?start=20010101&end=20011 231&latitude=50&longitude=50&community=sb¶meters=T2M,ALLSKY_SFC_SW_DWN



What is the POWER Data Access Viewer (DAV)?

- Provides a front-end web map with a simple user interface via integrated widgets that is responsive and built for mobile and desktop use
- Allows users to select community specific parameters, units, time periods, and the output formats to efficiently retrieve data from the Application Programing Interface (API)
- Enables users to follow a set of questions (without programming knowledge), to create the API request URL and download the requested data
- Displays global ArcGIS Image and Feature Services of data parameters and provides simple graphing capabilities

How do you use the POWER Data Access Viewer (DAV)?

Multiple Data Access Options

How do you use the POWER Data Access Viewer (DAV)?

Layer List Image Services:

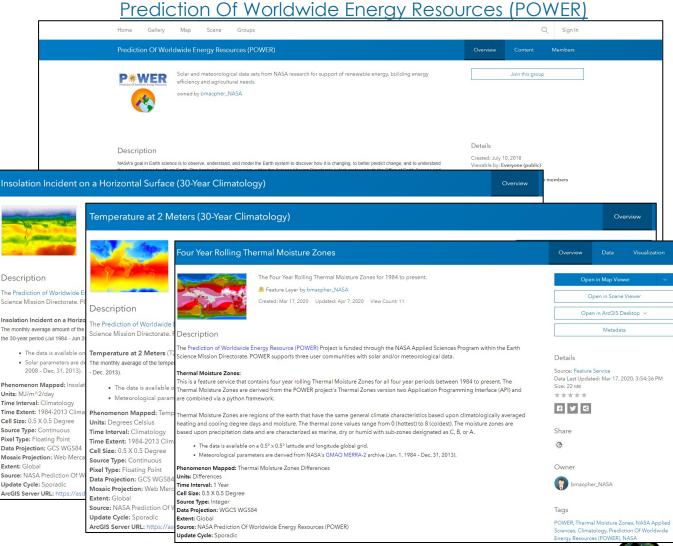
- Climatological average maps services for 20+ key variables
- Monthly and annual averages
 available
- Interactive values displayed for any location when clicked
- Integrated opacity control to view terrain below

Solar Irradiance for July in Kongiganak, Alaska, US

30

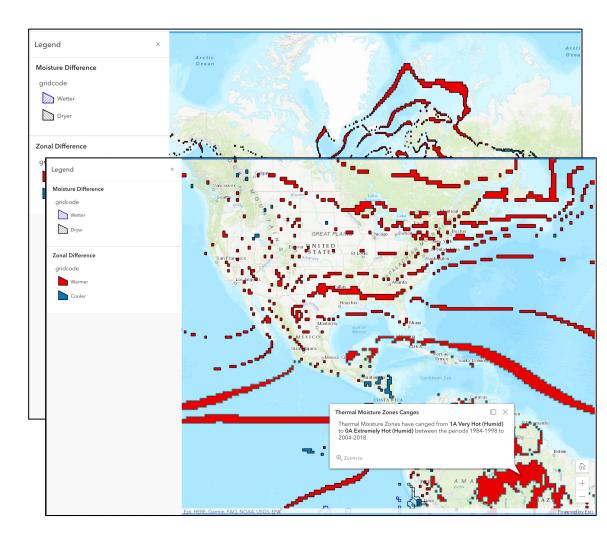
What GIS Services does POWER provide?

POWER provides Esri® ArcGIS Image and Feature Services that allow users to efficiently interact with the POWER data in Geographic Information System (GIS) applications and related tools.


- Image Services: Global climatologybased solar and meteorological parameters
- Feature Services: Global long-term ASHRAE[®] building climate thermalmoisture zones, 4-year rolling thermal zones, and period differences

Available on:

- NASA ArcGIS Online (AGOL)
- ASDC ArcGIS Online
 - Esri Living Atlas


NASA's Applied Remote Sensing Training Program

Esri[®]: is a registered trademark of the Environmental Systems Research Institute, Inc. ASHRAE[®]: is a registered trademark of the American Society of Heating, Refrigeration and Air Conditioning Engineers

What GIS services does POWER provide?

- The Web maps and StoryMaps[®] allow users to more efficiently explore, modify, and interact with the POWER Data without need for additional software
- Responsive and scalable; built for mobile and desktop use
- Examples:
 - Reviewing regional data quality by comparing to surface measurements
 - Long-term differences in ASHRAE[®] building climate zones

StoryMap[®]: is a registered trademark of the Environmental Systems Research Institute, Inc. ASHRAE[®]: is a registered trademark of the American Society of Heating, Refrigerating and Air-Conditioning Engineers

gineers 32

What are POWER's analytic data services?

New in power/beta ...

POWER provides single location, user specified time period reports to assess long-term variability:

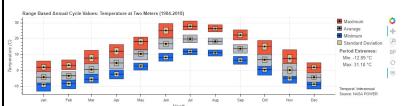
- Anomaly Report
 - Time series plots and climatological assessments
 - ASHRAE[®] building climate zone indicators change plots for climate monitoring

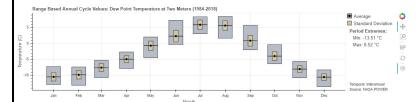
Building Climate Design Conditions Report

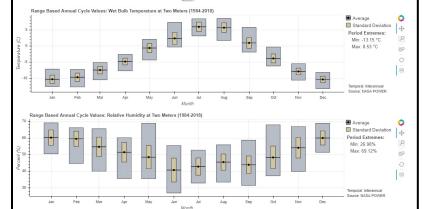
- Developed with ASHRAE[®] from the Design Condition report
- Windrose Report
 - Average wind speeds reported in tables classified according to NREL using wind energy thresholds

1. Choose a	Report Type										
Climatic Design Conditions											
2. Enter Lat/	Lon or Add a	Point to Map									
Q	Latitude	(Decimal Degrees)									
Clear	Longitude	(Decimal Degrees)									
3. Select Tim	e Extent										
Start Date	2001 ~	(1111)									
End Date	2018 ~	(\\\\)									
4. Choose a F	Report Type										
HTML		~									
	d Process Download a Repo take up to a min										

Analytic Data Services – Report Outputs

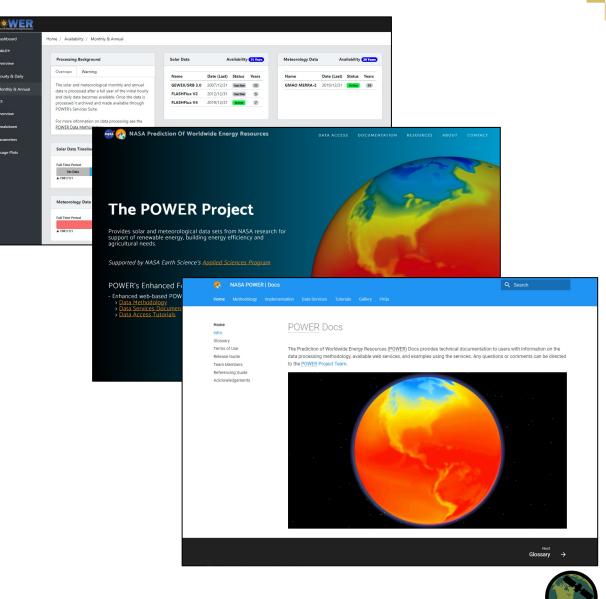

Building Climatic Design Conditions


Latitu		Longi	tude:		Climatic on: 28.3	-			Period: 2			.5 x 0.5		Gridded	
29.61	.06	-82.2	603		ual Heat			ificatio	2019 Desigr	1 Condi	tions	D	ata		
Coldest	Heati	ng DB		Humid 99.6%	ification D	P/MCDE	3 and HR 99%		Cold		th WS/M	ICDB %		PCWD to 5% DB	,
Month	99.6%	99%	DP	99.0% HR	MCDB	DP	HR	MCDB	ws	MCDB	ws	MCDB		PCWD	
1	-0.2	1.8	-5.6	0.0		-3.2	0.0		2.7		2.7				
			Ann	ual Co	oling, De	humid	ification	, and Er	thalpy	Design	Conditio	ons			
Hottest	Hottest Month	0.4			DB/MCWB	2	196	0.4	4%		n WB/MC .%		%	MCW5/ 0.4	% DB
Month	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCW
7	12.5	35.8		34.7		33.6		28.4		28.1		27.8			
		Dehu	midificat	ion DP/	MCDB and	I HR					Enthalp	y/MCDB			. .
DP	0.4% HR	MCDB	DP	1% HR	MCDB	DP	2% HR	MCDB		4%	1	% MCDB		2% MCDB	Extrer Max V
35.8	нк 20.0	MCDB	25.3	нк 20.0	MCDB	25.0	20.0	MCDB	Enth	MCDB	Enth	мсрв	Enth	MCDB	29.6
					Evt	reme	Annual D	lesian (onditio	nc					-
				Extre	me Annua	l Temp	erature	r	-Year Re	turn Per	iod Value	es of Ext	reme Te	mperatu	re
Extrem	ie Anni	iai WS		м	ean	Star dev	ndard iation	n=5	years	n=10	years	n=20	years	n=50) years
1% 6.0	2.5% 5.2	5% 4.5	DB	Min -3.6	Max 37.4	Min 1.8	Max 1.6	Min -4.9	Max 38.6	Min -6.0	Max 39.6	Min - 7.0	Max 40.5	Min -8.3	Max 41.7
6.0	5.2	4.5	WB	-3.6 -5.4	37.4 29.2	1.8	1.6	-4.9 -7.5	38.6 29.5	-6.0 -9.2	39.6 29.7	-7.0 -10.8	40.5 29.9	-8.3 -12.9	41.7
					Ma	- Ala luu C	limatic I		Conditio						
			Annual	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
		DBAvg DBStd	21.2	11.5 2.2	15.3 3.0	17.3 1.8	21.3 1.3	25.1 1.1	27.1	27.9 0.8	27.5 0.4	26.0 0.8	22.3 1.4	17.2 2.1	15.6
Tempera		HDD10.0	59	40	8	2	0	0	0	0	0	0	0	3	6
Degree and De	Days	HDD18.3 CDD10.0		204 100	95 168	63 240	8 350	0 475	0 524	0 563	0 555	0 495	8 397	61 235	95 199
Hou		CDD18.3		7	20	45	109	218	275	306	298	246	148	44	31
		CDH23.3 CDH26.7													
Win	d	WSAvg	2.3	2.7	2.6	2.6	2.6	2.3	2.0	1.7	1.9	2.1	2.6	2.4	2.5
		PrecAvg	811	53	44	45	41	45	86	77	145	173	38	44	31
Precipit	ation	PrecMax	1383	125	94	146	99	108	202	156	268	394	92	101	80
		PrecMin PrecStd	3 637	3 48	2 39	1 53	2 41	1 40	3 76	5 68	3 123	1 155	2 37	2 46	5 27
			DB	15.2	18.2	19.3	22.9	26.8	28.1	29.4	28.1	27.1	24.3	20.2	19.1
Mont		0.4%	MCWB	11.2	16.0	15.2	18.4	19.4	23.0	23.8	24.2	23.4	20.1	17.7	16.3
Design Bulb and		2%	DB MCWB	15.0 11.0	18.1 15.9	19.2 15.2	22.9 18.4	26.7 19.4	28.1 23.0	29.3 23.8	28.1 24.2	27.1 23.4	24.3 20.0	20.1 17.5	18.9
Coincie Wet B	lent	5%	DB	14.4	18.1	19.2	22.9	26.5	28.1	29.1	28.0	27.0	24.2	19.7	18.5
Tempera		10%	MCWB DB	10.7 13.6	15.8 17.9	15.1 19.2	18.3 22.8	19.4 26.2	23.0 28.1	23.8 28.7	24.2 27.9	23.3 26.9	19.8 24.0	17.1 19.1	15.5
	_	10%	MCWB	10.1	15.7	15.0	18.1	19.4	23.0	23.8	24.2	23.1	19.5	16.5	14.6
		0.4%	WB	11.2	16.0	15.2	18.4	19.4	23.0	23.8	24.2	23.4	20.1	17.7	16.3
Mont Design			MCDB WB	15.2 11.0	18.2 15.9	19.3 15.2	22.9 18.3	24.1 19.3	26.5 23.0	27.9 23.8	27.7 24.2	27.1 23.4	24.3 20.0	20.2 17.4	19.1 16.0
Bulb and	Mean	2%	MCDB	15.0	18.1	19.3	22.8	24.1	26.5	27.9	27.7	27.1	24.1	20.1	18.9
Coincide Bul		5%	WB MCDB	10.7 14.4	15.8 18.1	15.1 19.2	18.0 22.6	19.2 24.1	23.0 26.5	23.8 27.9	24.2	23.3 27.0	19.8 23.8	17.0 19.7	15.5
Tempera	atures	10%	WB	10.1	15.6	14.9	17.5	19.0	22.9	23.8	24.2	23.1	19.4	16.2	14.6
			MCDB	13.6	18.0	19.2	22.4	24.1	26.5	27.8	27.6	26.9	23.3	19.1	17.9
Mean I	Daily		MDBR MCDBR	11.5	11.8	12.5	12.3	12.1	9.5	9.0	8.4	8.4	10.2	11.6	10.7
Temper	ature	5% DB	MCWBR												
Rang	ge	5% WB	MCDBR MCWBR												
Clear		tau													
Sola Irradia		Ebn,r	noon												
		Edn,r	100N												
	Solar	Rad		3.2	3.94	5.02	5.97	6.45	5.84	5.43	5.38	4.79	4.48	3.53	2.9


Climate Variability and Anomalies Report

POWER Climate Anomalies (MERRA-2 and SRB/CERES)

Windrose Report Table by NREL Classes


NASA/POWER N Dates (month	n/day/year								5.40 A				
Single Point													
Location: La Elevation fr					ree lat/1	on region	- 92 22	maters	site - na				
value for m													
Parameter(s)													
WR10M			meters (p	percent)									
		LASS_1: 6	0-1.5 m/s L.5-3.0 m/	10									
			3.0-4.4 m/										
			4.4-5.1 m/										
			5.1-5.6 m/										
			5.6-6.0 m/										
		LASS_7: 6	5.0-6.4 m/ 5.4-7.0 m/	S (c									
			7.0-9.4 m/										
		LASS_10:											
WR50M			meters (p	percent)									
		LASS_1: 0	0-1.5 m/s L.5-3.0 m/	10									
			3.0-5.6 m/										
			5.6-6.4 m/										
			5.4-7.0 m/										
			7.0-7.5 m/										
			7.5-8.0 m/ 3.0-8.8 m/										
			3.8-11.9 n										
			11.9+ m/s										
WD_PCT			Percent (
WD_AVG DIRECTION			Average W			he conter	noint h	eing defir	ad (dear	000)			
CLASS											toffs for	10m and	50m Hei
PARAMETER D													
-END HEADER													
WR10M	000.0	1.59	4.03	1.60	0.33	0.16			0.02	0.03			
WR10M WR10M	022.5	1.73		0.94	0.10	0.00	0.02	0.00	0.01	0.00			
WR10M	067.5							0.02				9.68	
WR10M								0.01				7.15	
											0.00		
								0.00				3.25	
								0.02				3.29	
		1.06						0.01				3.91	
WR10M	225.0							0.02				4.22	
WR10M WR10M	247.5	1.19						0.02				4.18	
WR10M	292.5		3.30	1.34					0.02			5.42	
WR10M	315.0		3.56				0.24		0.21			11.05	
WR10M	337.5	1.51	4.01	3.13	1.02	0.45	0.27	0.17	0.10	0.20	0.01	10.86	3.14
WR10M			47.60					0.71		0.68	0.03	100.02	
WR50M WR50M	000.0	0.63		3.79	0.59			0.23		0.13	0.01	7.95	
WR50M	045.0	0.54		4.06				0.05				7.27	
WRSOM	067.5	0.41	1.66	5.24	1.18	0.61	0.34	0.23	0.13	0.13	0.00	9.93	4.51
WR50M	090.0		1.48	3.81	0.56	0.20	0.15	0.09				6.90	
WR50M WR50M	112.5	0.37	1.45	2.44	0.24		0.05	0.04				4.72	
WR50M	135.0	0.39		1.45	0.13	0.07		0.02		0.00	0.00	3.21 3.24	3.33
WR50M	180.0	0.47	1.18	1.44	0.05							3.32	3.10
WR50M	202.5	0.43	1.18	1.81	0.17	0.10	0.04	0.02	0.01	0.03	0.01	3.80	3.49
WR50M	225.0	0.47	1.31	2.01	0.17	0.12					0.01	4.28	3.57
	247.5	0.42	1.20	1.83	0.27	0.12							
WR50M	270.0	0.55	1.31	2.63		0.16							
WR50M		0.62		4.21	1.30								
	315.0												
WR50M WR50M	315.0 337.5	0.54	1.71	4.32	1.06	0.81	0.58	0.53	0.61	0.59	0.05	10.80	5.07

Where is the POWER documentation?

The POWER Documentation consists of four main sites that are built for both mobile and desktop use:

- **Homepage:** The project overview with links to all POWER resources.
- **Dashboard:** A series of dynamic webpages that provide real-time status information on data processing.
- **Pages:** The API landing pages that use the OpenAPI specification to create interactive pages for the API endpoints.
- **Docs:** The project's documentation and methodology providing accurate and detailed information to users.

What Have We Learned?

NASA Earth Observations (EO) data products are customized through POWER to address energy related data needs.

- Global solar irradiance estimates are made using specialized measurements:
 - Of the sun from SORCE/TSIS
 - Calculated using information from a combination of NASA CERES instruments and satellite imagers
 - Estimates are made within a week of observation
- Surface meteorological parameters are made available from atmospheric reanalysis from NASA's MERRA-2
 - Estimates of these quantities are available within a few days

- The POWER Web Services Portal:
 - Uses NASA's EO and modeling to customize datasets for energy related applications
 - Spans from 1984 to within a few days of the current time
 - Daily, Monthly, Annual, and Climatological averages provided
 - Data is made available through:
 - API for direct usage
 - DAV for interactive selection
 - Web image and feature services
 - New version features hourly data since Jan. 2001

Thank You!

Find us at: <u>https://power.larc.nasa.gov/</u> Email us at: <u>larc-power-project@mail.nasa.gov</u>

NASA's Applied Remote Sensing Training Program

ACRONYMS

Three Dimensional
Application Programming Interface
Analysis Ready Data
Atmospheric Radiation Measurement
American Standard Code for Information Interchange
Baseline Surface Radiation Network
Clouds and the Earth's Radiant Energy System
Comma Separated Values
Data Access Viewer
Deep Space Climate Observatory
Earth Observation
Fast Longwave and Shortwave Flux
Forward Processing-Investigator Team
Global Energy Balance Archive
Geostationary Operational Environmental Satellite
Global Energy and Water Exchanges Project
Geographic Information System
Global Modeling and Assimilation Office
Global Summary of the Day
International Satellite Cloud Climatology Project
Integrated Surface Database
International Space Station
Langley Research Center
Max-Planck Aerosol Climatology

MERRA-2	Modern-Era Retrospective analysis for Research and Applications, Version 2
MODIS	MODerate resolution Imaging Spectrometer
NASA	National Aeronautics and Space Administration
NCEI	National Center for Environmental Information
NetCDF	Network Common Data Form
NOAA	National Oceanic and Atmospheric Administration
NREL	National Renewable Energy Laboratory
NSIDC	National Snow and Ice Data Center
PAR	Photosynthetically Active Radiation
POWER	Prediction of Worldwide Energy Resources
PV	Photovoltaic
SatCORPS	Satellite ClOud and Radiation Property retrieval System
SORCE	SOlar Radiation Climate and Experiment
SRB	Surface Radiation Budget Project
ΤΟΑ	Top Of Atmosphere
TSI	Total Solar Irradiance
TSIS	Total and Spectral Solar Irradiance Sensor
URI	Uniform Resource Identifier
URL	Uniform Resource Locator
VIIRS	Visible Infrared Imaging Spectrometer

POWER Data: What Parameters are Provided?

Base and Derived Parameters for POWER GIS v2 (Beta)

All parameters are available globally at the source data resolution.

Source Data (Hourly)	Daily, Monthly, & Annual	Climatological
 All-Sky & Clear-Sky Surface Solar Insolation on Horizontal Surface Surface Reflected Solar Flux All Sky Downward Longwave Radiative Flux Top-Of-Atmosphere Insolation 	Clear & Cloudy Clearness Indexes	 Solar geometry, Surface albedo, Direct Normal, Diffuse, Tilted surface solar parameters 3-hourly solar fluxes and cloud parameters, No-sun Days, min insolation over day periods
 Air Temperature at 2 m, 10 m Specific Humidity at 2 m, 10 m Surface Dewpoint at 2 m Surface Pressure Surface Skin Temperature U, V, Wind Speed, & Wind Direction at 2 m, 10 m, and 50 m Precipitation 	 Air Temperature Average, Min, Max, Range at 2 m, Wet Bulb Temp Frost point at 2 m Relative Humidity at 2 m Wind speed and Direction at 10m, 50 m Max/Min Wind Speed 	 Heating/Cooling Degree Days (for 0° C, 10° C, 18.3° C standards), Skin Temperature max/min/range, Frost Days, Total Column Precipitable Water ASHRAE[®] Building Climate Thermal & Moisture zones

Source Data:

ASHRAE[®]: "ASHRAE" is a registered trademark of the American Society of Heating, Refrigeration and Air Conditioning Engineers

- Global Energy and Water Exchange Project (GEWEX) Surface Radiation Budget (SRB)
- Fast Longwave And SHortwave Radiative Fluxes (FLASHFlux)
- Modern Era Retro-analysis for Research and Applications (MERRA-2)
- Forward Processing Instrument Team FP-IT (GEOS 5.12.4)

9

NASA's Applied Remote Sensing Training Program