

Introduction to Population Grids and their Integration with Remote Sensing Data for Sustainable Development and Disaster Management

March 30, 2021

NASA's Applied Remote Sensing Training Program (ARSET)

https://appliedsciences.nasa.gov/what-we-do/capacity-building/arset/about-arset

- Part of NASA's Applied Sciences Program
- Empowering the global community through remote sensing training
- Seeks to increase the use of Earth science in decision-making through training for:
 - Policy makers
 - Environmental managers
 - Other professionals in the public and private sector

https://www.popgrid.org/about-us

BILL& MELINDA GATES foundation

Center for International Earth Science Information Network EARTH INSTITUTE | COLUMBIA UNIVERSITY

NASA's Applied Remote Sensing Training Program

Course Structure and Materials

- Two, 2-hour sessions on March 30 and April 6
- The same content will be presented at two different times each day:
 - Session A: 10:00-12:00 EDT (UTC-4)
 - Session B: 15:00-17:00 EDT (UTC-4)
 - You only need to attend one session per day.
- Webinar recordings, PowerPoint presentations, and the homework assignment can be found at:
 - <u>https://appliedsciences.nasa.gov/join-</u> <u>mission/training/english/arset-introduction-</u> <u>population-grids-and-their-integration-remote</u>
 - Q&A following each lecture and/or by email at:
 - <u>brock.blevins@nasa.gov</u>
 - <u>nasa.arset@gmail.com</u>

HOME / JOIN THE MISSION / TRAINING

Homework and Certificates

- Homework:
 - One homework assignment given after Part 2
 - Answers must be submitted via Google
 Forms
 - HW Deadline: Tuesday April 27

• Certificate of Completion:

- Attend both live webinars (March 30 and April 6)
- Complete the homework assignment by the deadline (access from ARSET website)
- You will receive certificates approximately three months after the completion of the course from: <u>marines.martins@ssaihq.com</u>

Course Outline

NASA's Applied Remote Sensing Training Program

An Introduction to Population Grids and Their Uses

Stefan Leyk & Greg Yetman

March 30, 2021

An Introduction to Population Grids and Their Uses

- A. The POPGRID Data Collaborative
- **B.** The Motivation for Gridded Population Data
- C. Methodological Frameworks for Population Allocation
- D. Global Gridded Population Layers
 E. POPGRID's Goals Moving Forward
 F. POPGRID Website and the POPGRID Viewer
 G. Application Areas for Population Grids
 H. Data Uncertainty and Fitness for Use

POPGRID

https://www.popgrid.org/about-us

Mission: "Data for everyone"

Bring together and expand the international community of **data providers**, **users**, **and sponsors** concerned with georeferenced data on population, human settlements, and infrastructure to:

- Improve data **access**, timeliness, consistency, and utility;
- Support data **use** and interpretation, reduce confusion;
- Identify and address pressing **user needs**;
- Encourage innovation and cross-disciplinary use.

TR INDS

Center for International Earth Science Information Network EARTH INSTITUTE | COLUMBIA UNIVERSITY

https://www.popgrid.org/about-us

Objectives: "Cooperation for technical & data advancement"

Channel **expertise** from natural, social, health, & engineering sciences and from government, academia, private industry, & NGOs.

Promote **cooperation** in producing & harmonizing high-quality data and services

- Improve accessibility and documentation of data sets and services
- Compare and contrast methods and implications of different data sources
- Convene experts from the geospatial and demographic communities
- Provide online tools and services to facilitate visualization & intercomparison

Center for International Earth

Science Information Network

Data Providers

CIESIN

CUNY-CIDR

Connectivity Lab at Facebook Esri

German Aerospace Center

Joint Research Centre

ImageCat, Inc.

Oak Ridge National Laboratory

U.S. Census Bureau

The WorldPop Program

https://www.popgrid.org/data-providers

Center for International Earth Science Information Network EARTH INSTITUTE | COLUMBIA UNIVERSITY

European Commissio

Joint Research Centre

Leaving no one off the map

A GUIDE FOR GRIDDED POPULATION DATA FOR SUSTAINABLE DEVELOPMENT

A Report by the Thematic Research Network on Data and Statistics (TReNDS) of the UN Sustainable Development Solutions Network (SDSN) in Support of the POPGRID Data Collaborative

2020

Maryam Rabiee & Hayden Dahmm

Thematic Research Network on Data and Statistics of the UN SDS Network (SDSN TReNDS)

Also available in Spanish and French:

LEAVING NO ONE OFF THE MAP

A GUIDE FOR GRIDDED POPULATION DATA FOR SUSTAINABLE DEVELOPMENT

2020

https://www.unsdsn.org/leaving-no-one-off-the-map-a-guide-for-gridded-population-data-for-sustainable-development

Gridded what...?

- Tesselations: rasterized representation of population
- Grid cells that carry population counts
- Partitioning counts summarized within census boundaries

2015 Estimated Population (number of persons)

WorldPop 2014 Population (persons per grid cell)

0-1

1-5 5-25 25-250

250-1.000

Leaving no one off the map?

- Many applications related to population at various scales, but...
- Census data can create obstacles for such applications, as they:
 - o Are infrequent
 - Miss people (inaccessibility, social constraints, language)

0

12.653

12.653

• Are summarized for large areas that change over time

2015 Estimated Population (number of persons)

1-5 5-25 25-250 250-1,000

WorldPop 2014 Population (persons per grid cell)

Putting everyone on the map...

- Adv. GIS/remote sensing & the geospatial data revolution
- Complement (not replace) census data, fill in the gaps
- Estimates for non-administrative (and consistent) geographies at fine scale
- Policy-Making: Population growth, monitor change, plan interventions

2015 Estimated Population (number of persons)

1-5 5-25 25-250 250-1.000

WorldPop 2014 Population (persons per grid cell)

WorldPop

Census

A Geospatial Data Revolution

A Wide Range of Applications in the Interdisciplinary Community

- Land use and urban planning
- Measurement of economic development
- Transportation infrastructure
- Management and rural access
- Resource allocation and accessibility
- Disaster risk mitigation,
- Management and reduction
- Climate change research
- Sampling design for household surveys
- Public health campaigns and assessments
- Sustainable resource management
- Intern. frameworks for development and sustainability

https://sdgs.un.org/goals

C. Methodological Frameworks for Population Allocation

Data **integration/allocation** through forms of <u>areal interpolation</u>

- Areal Weighting
- Dasymetric Modeling
 - Binary
 - Empirical
- Statistical-Dasymetric Modeling
- Hybrid Modeling
 - Machine learning/ensemble prediction
 - Population weights for dasymetric refinement

C. Methodological Frameworks for Population Allocation

Areal Interpolation to Address Zonation Incompatibility

Example **Areal Weighting**: Estimation of source populations within target zones is based on the proportion of area overlap between target zones (E) and source zones (A-D). Based only on geometry!

$$\hat{y}_t = \sum_s \frac{Area_{st}}{Area_s} y_s$$

st – intersection between source s and target t y – variable of interest (e.g., population)

C. Methodological Frameworks for Population Allocation Areal Weighting

C. Methodological Frameworks for Population Allocation

Dasymetric Mapping

- Type of areal interpolation to address zone incompatibility and aggregation (in choropleth maps)
- Re-allocating population to mapping zones that better reflect population distributions
- Limiting and related ancillary variables
- Volume-preserving (pycnophylactic) approach

C. Methodological Frameworks for Population Allocation

Limiting Ancillary Variables:

Restrict possible occurrences in the original unit (**limit** the **area proportion** within the same unit)

Related Ancillary Variables:

Associated with the variable of interest: a) Set of rules how the variable will influence our variable in what way...

b) **Statistical relationships** (economy, terrain, road distance)

C. Methodological Frameworks for Population Allocation Dasymetry with Limiting Ancillary Data

C. Methodological Frameworks for Population Allocation

Unit A, I	n=54		-	Unit	B, n=36	
6	6	6	4	4	4	
6	6	6	4	4	4	
6	6	6	4	4	4	

Areal Weighting

Dasymetric: Empirically derived weights e.g., land use classes (different grey tones)

Unit A, n=	54		Unit B, n=36			
4	4	4	3	3	3	
4	8.5	8.5	7.5	3	3	
4	8.5	8.5	7.5	3	3	

Dasymetric: Binary weights grey: built-up land hashed: no built-up										
Unit A, n=	=54		Unit B, n=	-36						
0	0	0	0	0	0					
0	13.5	13.5	18	0	0					
0	13.5	13.5	18	0	0					

Dasymetric: Statistically derived weights (informed by multiple ancillary variables): $\hat{\mathbf{Y}} = \alpha + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + ... + \beta_n \mathbf{X}_n$

Unit A, n=54

Unit B, n=36

5	5.5	5.5	3	2	2
5	7	7	9	3	2
5	7	7	9	3	3

C. Methodological Frameworks for Population Allocation

Ancillary Variables

Relationship to Population Temporal Mismatches Spatial Granularity

- Roads
- Land Cover
- Built structures
- Cities or Urban areas
- Night-time lights
- Infrastructure
- Environmental data
- Protected areas
- Water bodies

OpenStreetMap Roads ≡ motorway — secondary — trunk

WorldPop 2014 Population (persons per grid cell)

0-1 1-5 5-25 25-250 250-1,000

C. Methodological Frameworks for Population Allocation

Gridded population dataset	Population	Ancillary data layers								
		Roads	Land cover	Built structures	Cities or urban areas	Night- time lights	Infrastructure	Environmental data ^b	Protected areas ^a	Water bodies
GPW	х								а	x
GRUMP	х				x	х			а	х
LandScan	x	x	x	x	x		x	x	x	x
GHS-POP	х			x						
WPE	x	X	x		x					x
WorldPop	x	x	x	x	x	х	x	x	X	х
HYDE 1950-2015	X							X		x

^a Protected areas were not masked out, but national statistical offices often assign no data or 0 (zero) to protected areas. ^b Climate, topography, elevation.

Have a look at the data distributions...

D. Global Gridded Population Grids

Many Global (and near-global) Gridded Population datasets are available!

Name	Resolution	Years	Organization	Model	
<u>Global Human</u> <u>Settlement Layer</u> <u>Population (GHS-</u> <u>POP)</u>	250m (projected) 9 arc-seconds	1974, 1990, 2000, 2015	Joint Research Centre (JRC)	Machine Learning + weighted allocation	
<u>Gridded Population</u> of the World (GPW)	30 arc-seconds (~1km)	2000, 2005, 2010, 2015, 2020	CIESIN/SEDAC	Proportional allocation	
<u>High Resolution</u> Population Density Maps (HRSL)	1 arc-second (~30m)	2020	Facebook	Machine learning + weighted allocation	
<u>LandScan</u>	30 arc-seconds (~1km)	2019 (annual release)	Oak Ridge National Laboratory	Multivariate Dasymetric	
World Population Estimate (WPE)	5 arc-seconds (~150m)	2016 (periodic release)	Esri	Multivariate Dasymetric	
WordPop	3 arc-seconds (~90- 100m)	2000-2020 (annual estimates)	WorldPop	Machine Learning (Random Forest)	

E. POPGRID's Goals Moving Forward

- Improving accessibility and documentation of data sets and data services
- Comparing and contrasting methods and implications of different data sources
- Convening technical experts from the geospatial and demographic communities at events and conferences worldwide
- Providing online tools and services to facilitate user visualization and intercomparison for specific regions and types of data of interest
- Developing an intercomparison report that clarifies how different data sets are useful for different applications and research

E. POPGRID's Goals Moving Forward

- Example Paper (Preprint): Evaluating the Accuracy of Gridded Population Estimates in Slums: A Case Study in Nigeria and Kenya
- D. Thomson et. al, 2021 https://www.preprints.org/manuscript/202102.0521/ v1

ID: 20 Agbajowo Unconstrained 0 0.5 1 Km Highly modelled Unconstrained ~100x100 m

ID: 32 Ilaie Otumar

0 0.5 1 Km

F. POPGRID Website and the POPGRID Viewer

https://popgrid.org

			P)	
Home	About	Events	News	Data Providers -	Explore Data ~	Resources ~	•••

Global Population Grids: Summary Characteristics

Dataset	Source	Concept	Method	Grid Cell Size	Year(s)	Source for	Distribution		
					Represented	National Level	Policy		
						Population			
						Totals			
Unmodeled Population Grids									

Global And Continental Urban Extent / Settlement Layers: Summary Characteristics

Dataset	Source	Concept	Method	Imagery Used	Spatial Resolution	Year(s) Represented	Distribution Policy
Global	NASA Goddard	Extent of	Integrates spatial texture	Landsat	30 meter,	2010	Open access

F. POPGRID Website and the POPGRID Viewer GitHub Demo

https://popgrid.org

GitHub Demo

https://github.com/gyetman/popgrid_service_demo/

G. Application Areas for Population Grids

Common Applications:

Exposure to hazards ٠

Coastal Zone (LECZ)

- Health service delivery; health facility planning / access ٠
- Monitoring (SDG goals, population change) ٠
- Commercial applications (cell phone networks, new market ٠ estimation)
- Human-environment research •

SDG 9.1.1: Rural Access to Roads

G. Application Areas for Population Grids

Continental Physiography, Climate, and the Global Distribution of Human Population

Small and Cohen, 2004. Current Anthropology, Volume 45, Number 2

H. Data Uncertainty and Fitness for Use

Inter-comparison of existing population grids

Validation efforts and their challenges

Fitness for Use: Context of target applications

Inform users about forms of appropriate, uncertaintyaware use

Tuholske et al. (2019): Total urban population by settlement size for Africa

H. Data Uncertainty and Fitness for Use

Concept of **"relative data quality"** (Tayi & Ballou 1998)

Assess the **appropriateness** of a given dataset for an **intended purpose**

Guide user community in making **informed decisions** by better understanding: Spatial, thematic and temporal **accuracy** in relation to the intended use, driven by...

(1) Input population data properties
(2) Modeling assumptions behind products
(3) Ancillary data

GPWv4.11

H. Data Uncertainty and Fitness for Use

Data Aspects of **Relative Quality** & their Interrelations:

GPWv4.11

H. Data Uncertainty and Fitness for Use

Data Aspects of **Relative Quality** & their Interrelations:

- Aggregation, mismatch, variation w/ regard to...
 - Scale
 - Currency
 - Semantics (populations)

Processing- & **Model-Related** Implications of **Uncertainty**:

- Integration/allocation
- Modeling intensity
- Uncertainty propagation

WorldPop

GHS-POP

H. Data Uncertainty and Fitness for Use

Guiding questions to inform the user:

- How important is spatial refinement of the population grid to be used?
- Does the analysis focus on urban populations?
- What is the target population for the question at hand?
- Is the population grid being used to model other outcomes?
- Are you analyzing change over time?
- How have these datasets been used previously?

Earth Syst. Sci. Data, 11, 1385–1409, 2019 https://doi.org/10.5194/essd-11-1385-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

The spatial allocation of population: a review of large-scale gridded population data products and their fitness for use

Stefan Leyk^{1,11}, Andrea E. Gaughan^{2,10}, Susana B. Adamo³, Alex de Sherbinin³, Deborah Balk⁴, Sergio Freire⁵, Amy Rose⁶, Forrest R. Stevens^{2,10}, Brian Blankespoor⁷, Charlie Frye⁸, Joshua Comenetz⁹, Alessandro Sorichetta¹⁰, Kytt MacManus³, Linda Pistolesi³, Marc Levy³, Cectangular Snip Andrew J. Tatem¹⁰, and Martino Pesaresi⁵

 ¹Department of Geography, University of Colorado Boulder, Boulder, CO 80309, USA
 ²Department of Geography and Geosciences, University of Louisville, KY 40292, USA
 ³CIESIN, Columbia University, Palisades, NY 10964, USA
 ⁴CUNY Institute for Demographic Research, and Marxe School of Public and International Affairs, Baruch College, City University of New York, New York City, NY 10010, USA
 ⁵European Commission, Joint Research Centre (JRC), Ispra, Italy
 ⁶Human Dynamics Group, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
 ⁷Development Data Group, World Bank, Washington, D.C. 20433, USA
 ⁸Environmental Systems Research Institute, Redlands, CA 92373, USA
 ⁹U.S. Census Bureau, Washington, D.C. 20233, USA
 ¹⁰WorldPop, School of Geography and Environmental Sciences, University of Southampton, Southampton, SO17 1BJ, UK
 ¹¹Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO 80309, USA

Correspondence: Stefan Leyk (stefan.leyk@colorado.edu)

Received: 21 May 2019 – Discussion started: 6 June 2019 Revised: 23 July 2019 – Accepted: 25 July 2019 – Published: 11 September 2019

Further Recommended Reading

- Sorichetta, A., Hornby, G., Stevens, F. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci Data 2, 150045 (2015). https://doi.org/10.1038/sdata.2015.45
- Nelson, A., Weiss, D.J., van Etten, J. et al. A suite of global accessibility indicators. Sci Data 6, 266 (2019). https://doi.org/10.1038/s41597-019-0265-5
- Balk, D., Deichmann, U., Yetman, G., Pozzi, F., Hay, S. I., and Nelson, A.: Determining Global Population Distribution: Methods, Applications and Data, ADV PARASIT, 62, 119–156, https://doi.org/10.1016/S0065-308X(05)62004-0, 2006.
- Bhaduri, B., Bright, E., Coleman, P., and Dobson, J.: LandScan: Locating people is what matters, Geoinformatics, 5, 34–37, 2002.
- CIESIN: Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11, NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, <u>https://doi.org/10.7927/H4PN93PB</u>, 2018b.
- Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., and Worley, B. A.: LandScan: A Global Population Database for Estimating Populations at Risk, Photogramm. Eng. Rem. S., 66, 849–857, 2000. Eicher, C. L. and Brewer, C. A.: Dasymetric Mapping and Areal Interpolation: Implementation and Evaluation, Cartogr. Geogr. Inf. S., 28, 125–138, <u>https://doi.org/10.1559/152304001782173727</u>, 2001.
- Esch, T., Heldens, W., Hirner, A., Keil, M., Marconcini, M., Roth, A., Zeidler, J., Dech, S., and Strano, E.: Breaking new ground in mapping human settlements from space The Global Urban Footprint, ISPRS J. Photogramm., 134, 30–42, <u>https://doi.org/10.1016/j.isprsjprs.2017.10.012</u>, 2017.
- Frye, C. and Gilbert, M.: World Population Estimated 2016, Esri, https://doi.org/10.13140/RG.2.2.12996.48007, 2018a.
- Frye, C., Wright, D. J., Nordstrand, E., Terborgh, C., and Foust, J.: Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement, Data Science Journal, 17, p. 20, https://doi.org/10.5334/dsj-2018-020, 2018.
- Leyk, S., Gaughan, A. E., Adamo, S. B., de Sherbinin, A., Balk, D., Freire, S., ... & Comenetz, J.: The spatial allocation of population: A review of large-scale gridded population data products and their fitness for use. Earth System Science Data, 11(3), doi:10.5194/essd-11-1385-2019, 2019.
- Lloyd, C. T., Sorichetta, A., and Tatem, A. J.: High resolution global gridded data for use in population studies, Scientific Data, 4, 170001, https://doi.org/10.1038/sdata.2017.1, 2017.
- Nagle, N. N., Buttenfield, B. P., Leyk, S., and Speilman, S.: Dasymetric Modeling and Uncertainty, Ann. Assoc. Am. Geogr., 104, 80–95, https://doi.org/10.1080/00045608.2013.843439, 2014.
- Nelson, A., Weiss, D.J., van Etten, J. et al. A suite of global accessibility indicators. Sci Data 6, 266 (2019). https://doi.org/10.1038/s41597-019-0265-5
- Pesaresi, M., Ehrlich, D., Florczyk, A. J., Freire, S., Julea, A., Kemper, T., and Syrris, V.: The global human settlement layer from landsat imagery, in: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016, IEEE, 7276–7279, <u>https://doi.org/10.1109/IGARSS.2016.7730897</u>, 2016b.
- Ruther, M., Leyk, S., & Buttenfield, B. P. Comparing the effects of an NLCD-derived dasymetric refinement on estimation accuracies for multiple areal interpolation methods. GIScience & Remote Sensing, 52(2), 158-178, 2015.
- Sorichetta, A., Hornby, G., Stevens, F. *et al.* High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. *Sci Data* **2**, 150045 (2015). https://doi.org/10.1038/sdata.2015.45
- Stevens, F. R., Gaughan, A. E., Linard, C., and Tatem, A. J.: Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data, PLOS ONE, 10, e0107042, https://doi.org/10.1371/journal.pone.0107042, 2015.
- Tatem, A. J.: WorldPop, open data for spatial demography, Scientific Data, 4, 170004, https://doi.org/10.1038/sdata.2017.4, 2017.
- Tayi, G. K. and Ballou, D. P.: Examining data quality, Commun. ACM, 41, 54–57, https://doi.org/10.1145/269012.269021, 1998.
- Tuholske, C., Caylor, K., Evans, T., & Avery, R.: Variability in urban population distributions across Africa. Environmental Research Letters, 14(8), 085009, 2019.
- WorldPop (School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Département de Géographie, Université de Namur) and CIESIN (Center for International Earth Science Information Network), Columbia University: Global High Resolution Population Denominators Project Funded by The Bill and Melinda Gates Foundation (OPP1134076), https://www.worldpop.org/doi/10.5258/SOTON/WP00645, 2018.

Thank You!

NASA's Applied Remote Sensing Training Program