

Water Resources Management Using NASA Earth Science Data

COURSE DATES: EVERY Tuesday, October 13, 20, 27; November 3, 10

TIME: 10 TO 11 AM AND 2 TO 3 PM Eastern US Time

(UTC-4 Hours for October and UTC-5 Hours for November)

Applied Remote Sensing Training

To provide information about availability and access to global freshwater data from NASA remote sensing observations and land-atmosphere models to facilitate applications and decision support activities in planning water allocation, flood and drought management, agricultural management, and reservoir/dam management

Webinar Outline

Week 1

NASA Remote Sensing Data and Applications for Water Resources Management

Week 2

Precipitation and Soil Moisture Data Access and Applications

Week 3

Run off, Streamflow and Reservoir Level Data Access and Applications

Week 4

Evapotranspiration and Ground Water Data Access and Applications

Week 5

Land Data Assimilation for Water Budget Estimation and Case Studies with GIS Applications

Training Team

Instructors:

Amita Mehta (ARSET): <u>amita.v.mehta@nasa.gov</u>

Cynthia Schmidt (ARSET): <u>cynthia.l.schmidt@nasa.gov</u> (Week-4)

Brock Blevins (ARSET): <u>bblevins37@gmail.com</u>

Guest Speakers:

Eni Njoku(NASA-JPL): eni.g.njoku@jpl.nasa.gov (Week-2)

Brian Thomas (NASA-JPL): <u>Brian.F.Thomas@jpl.nasa.gov</u> (Week-4)

Sujay Kumar (NASA-GSFC): <u>sujay.v.kumar@nasa.gov</u> (Week-5)

Spanish Translation:

David Barbato (ARSET): <u>barbato1@umbc.edu</u>

General Inquiries about ARSET:

- Brock Blevins (ARSET) <u>bblevins37@gmail.com</u>
- Ana Prados (ARSET) <u>aprados@umbc.edu</u>

Important Information

Certificate of Completion (upon request):

You must attend all 5 live sessions
You must submit the homework assignments
(homework assignment links will be provided after Week-1 and Week-5)

Contact: Marines Martins

Email: marines.martins@ssaihq.com

Agenda for Week-1

NASA Satellite Missions and Land-Atmosphere Models Relevant to Water Resources Management

- About Applied Remote Sensing Training (ARSET)
 Program
- Water Resources Management
- Satellites and Earth Science Models Useful for Water Resources Management
- Water Resources Data Search, Access, Analysis, and Visualization Tools
- Water Resources Data Applications

About ARSET

ARSET is a Capacity Building Program of NASA Applied Sciences

Disasters

Ecological forecasting

Health and Air Quality

Water Resources

Agriculture

Climate

Energy

Oceans

Meteorology

NASA Applied Sciences Themes

ARSET Capacity Building Training Areas

Disasters

Ecological forecasting

Health and Air Quality

Agriculture

Climate

Energy

Oceans

Meteorology

Applied Remote SEnsing Training (ARSET)

http://arset.gsfc.nasa.gov

- ■**GOAL**: To increase utilization of NASA observational and model data for decision-support through training activities for environmental professionals.
- ■Online Trainings: Live and recorded, 4-6 weeks in length. Include demos on data access
- □In person Trainings: In a computer lab, 2- 4 days. Large focus on data access
- □ Train the Trainers: Courses and training manuals for those interested in conducting their own remote sensing training.
- Application Areas: water resources, disasters, health/air quality, and land management

Accomplishments (2008 – 2015)

- 53 trainings completed
- 4000+ participants worldwide
- 1400+ organizations
- 130+ countries

Applied Remote Sensing Training (ARSET)

Health (Air Quality)

- 2008 present
- 33 Trainings
- 1000+ end-users
- Analysis of dust, fires and urban air pollution.
- Long range transport of pollutants
- Satellite and regional air quality model inter-comparisons.
- Support for air quality forecasting and exceptional event analysis

Land Cover

Water Resources and Flood Monitoring

- April 2011 present
- 11 Trainings
- 1200+ end-users
- Flood/Drought monitoring
- Severe weather and precipitation
- Watershed management
- Climate impacts on water resources
- Snow/ice monitoring
- Evapotranspiration (ET), ground water, soil moisture, and runoff.

Satellite derived precipitation

Land Management

- Launched in 2014
- 2 Trainings, +300 end-users
- GIS Applications
- Vegetation indices
- Fire products (beginning in 2015)

Train the Trainers (Starting in 2015)

- Courses and guidance on how to design and develop, YOUR OWN online and/or computer based remote sensing training
- How to develop effective presentations and exercises.

Gradual Learning Approach

Basic Training
Webinars
Hands-on
Assumes no prior knowledge of RS

Advanced Training Hands-on

Webinar course generally required Focused on a specific application/ problem/Data: for example flood monitoring in a specific country or region **Online Training**

In-Person Training

ARSET Website

Access to ARSET Trainings

http://arset.gsfc.nasa.gov

Request a Training

http://arset.gsfc.nasa.gov

Apply for Training

The NASA Applied Remote Sensing Training Program provides webinars and in-person courses. The goal of these training activities is to build the capability and skills to utilize NASA earth science observations and model data for environmental management and decision-support. Courses are primarly intended for applied science professionals and decision makders from local, state, federal agencies, NGOS, and the private sector. ARSET also offers a Train the Trainers program, which is recommended for establishing or growing your organizations' capacity in applied remote sensing.

ARSET trainings are NOT designed for research but for operational and application driven organizations.

To apply for a training email Ana Prados at Ana.I.Prados@nasa.gov

The program offers four types of courses. For in-person courses, applicants must provide a computer laboratory or similar facility.

- 1. Overview webinar course: held over a period of 4-5 weeks, 1 hour per week
- Basic hands-on: In person applied remote sensing course for those new to remote sensing. Generally 2-3 days in length held. It is highly recommended that attendees first take the webinar course.
- Advanced hands-on: In person applied remote sensing course that builds the skills to use NASA data for a specific environmental management problem. Intended for those who have already taken the basic course or have previous experience using NASA data and resources. Generally 1-2 days in length.
- Train the Trainers: In person applied remote sensing course intended for existing remote sensing/geospatial trainers within the organization/institution/agency.

ARSET ListServ

For information on upcoming courses and program updates, sign up to the listserv

https://lists.nasa.gov/mailman/listinfo/arset

Water Resources Management

Water Resources Management

- Requires balancing availability and consumption of freshwater
- Planning for water allocation among various sectors
- Planning for disasters (droughts, floods)

Major Challenges:

- Regional and temporal imbalances in freshwater availability and usage
- Increasing demands -- population increase, agricultural and industrial demands
- Cross-boundary water sharing issues
- Climate variability and change

www.unwater.org

The definition of freshwater is water containing less than 1,000 milligrams per liter of dissolved solids, most often salts

http://water.usgs.gov/edu/watercyclefreshstorage.html)

Water Resources Management

For sustainable water management, it is critical to have accurate estimates of water cycle components

Water Resources Management Freshwater Components

Over a watershed, river basin, or region:

- Precipitation (rain, snow) is the main source of Fresh Water; regionally, runoff/streamflow, lakes, soil moisture, and ground water also contribute to available Fresh Water
- Evaporation and Evapotranspiration through the loss of water to the atmosphere and runoff outflow contribute to the depletion of available Fresh Water
- Surface Fresh water availability W is largely controlled as follows:

```
W= (Precipitation + Runoff in the region) minus (Evaporation/Evapotranspiration + Runoff Outflow + Infiltration)
```


Freshwater Information

- Not all water cycle components can easily be measured directly (e.g. evapotranspiration, runoff, water vapor transport)
- NASA Satellites and Earth Systems Models measure/calculate all water cycle components

Overview of Satellites and Earth Science Model Data for Water Resources Management

NASA Satellites and Earth Systems Models

Provide global-scale water cycle quantities on hourly, daily, seasonal, and multi-year time scales useful for water resources management

- Rain
- Temperature
- Humidity
- Winds
- Soil Moisture
- Snow/Ice
- Clouds
- Terrain
- Ground Water
- Vegetation Index
- Evapotranspiration
- Runoff

Water Resources Management:

Rain Amount, Snowmelt Amount

Runoff

Soil Moisture

Evapotranspiration

Ground Water

Hydrology Modeling Inputs:

Rain Amount, Snowmelt Amount

Surface Temperature, Wind, Humidity

Terrain, Land Cover

Solar and Terrestrial Radiation at the Surface

All other quantities are available from satellite observations as well as from models Quantities in green are derived from satellite observations

Quantities in red are from atmosphere-land models in which satellite observations are assimilated

NASA Satellites for Water Resources Monitoring

TRMM: Tropical Rainfall Measuring Mission

GRACE: Gravity Recovery and Climate Experiment

GPM: Global Precipitation Measurements

SMAP: Soil Moisture Active Passive

Landsat (07/1972-present)

TRMM (11/1997-04/2015)

GPM (2/27/2014-present)

Terra (12/1999-present)

Aqua (5/2002-present)

SMAP (1/31/2015-present)

GRACE (3/2002-present)

Jason-1&2 (12/2001-present)

Fundamentals of Satellite Remote Sensing

To use satellite observations, it is important to understand principles of remote sensing and attributes of satellite data:

- What is Remote Sensing? What is Measured?
- Types of Satellite Orbits
- Types of Satellite Sensors/Instruments, Spectral Bands
- Conversion from Sensor Measurements to Geophysical Quantities (i.e. Temperature, Rain, Soil Moisture, Carbon Dioxide etc.)
- Spatial and Temporal Resolutions and Coverage
- Spectral and Radiometric Resolutions
- Levels of Satellite Data Products
- Strengths and Limitations of Remote Sensing Data

The following link provides concepts and definitions about the above topics that will be used through out this webinar series: https://arset.adobeconnect.com/fundrssession1/event/registration.html

NASA Satellites for Water Resources Monitoring

 Each satellite carries one or more sensors/instruments with specific spectral channels to observe specific geophysical quantities

 Sensors most useful for the water resources data will be described in this training Landsat (07/1972-present)

TRMM (11/1997-04/2015)

GPM (2/27/2014-present)

Terra (12/1999-present)

Aqua (5/2002-present)

SMAP (1/31/2015-present)

GRACE (3/2002-present)

Jason-1&2 (12/2001-present)

Landsat (07/1972 – Present)

http://landsat.gsfc.nasa.gov/

Continuous mission with multiple satellites, Landsat-1 launched in July 23, 1972

- Near-polar orbit, 10 am equator-crossing time
- Global coverage
- July 1972- Present,16-day revisit time
- Sensors: MSS,TM, ETM+,OLI, TIRS

Quantities:

Land Cover

TRMM (11/1997 - 4/2015)

http://trmm.gsfc.nasa.gov

TRMM stopped collecting data in April 2015

Quantities: Surface Rainfall Rainfall Profiles Latent Heating

- A non-polar, low inclination orbit
 Revisit time ~11-12 hours, but time of the observation changes daily
- There are 16 TRMM orbits a day covering global tropics between 35° S to 35°N latitudes
- Sensors

Precipitation Radar (**PR**)*
TRMM Microwave Imager (**TM**I)
Visible and Infrared Scanner (**VIRS**)

Important Note:

The TRMM mission was terminated in April 2015 but near-real time TRMM-calibrated rainfall from other satellites are available until GPM data become available in near-real time

TRMM data from 1997-2014 are widely used for weather, climate, and hydrology applications and will be used in this

GPM (2/2014 – Present)

http://pmm.nasa.gov/GPM

- Non-polar, low inclination orbit with 16 orbits per day
- GPM observes global region between 65°S to 65°N latitudes
- Sensors:

Dual frequency Precipitation Radar (D**PR**) GPM Microwave Imager (**GM**I)

the area covered by three TRMM orbits [yellow] versus orbits of the GPM Core Observatory [blue]

Quantities:

Surface Precipitation (Rain and Snow) Precipitation Profiles

Terra (12/1999 – Present)

http://terra.nasa.gov

Quantities:

Land Cover
Snow Cover
Clouds
Water VApor
Radiative Fluxes
Aerosol Information
Digital Elevation

- Polar, Sun-Synchronous Orbit, Global Coverage
- Twice-daily Observations 10:30 AM/
 PM Descending Orbits

Sensors:

- <u>Moderate Resolution Imaging</u>
 <u>Spectroradiometer</u> (MODIS)
- Advanced Spaceborne Thermal <u>Emission</u> and Reflection Radiometer (ASTER)
- Clouds and Earth's Radiant Energy System (CERES)
- <u>Multi-angle Imaging Spectroradiometer</u> (MISR)
- <u>Measurements of Pollution in the</u>
 <u>Troposphere</u> (MOPITT)

Aqua (5/2002 – Present)

NASA

http://aqua.nasa.gov

- Polar, Sun-Synchronous Orbit, Global Coverage
- Twice-daily Observations 1:30 AM/
 PM Descending Orbits
- Sensors:
- <u>Moderate Resolution Imaging</u>
 <u>Spectroradiometer</u> (MODIS)
- Atmospheric Infrared Sounder (AIRS)
- Advanced Microwave Sounding Unit (AMSU-A)
- Advanced Microwave Scanning Radiometer for EOS (AMSR-E)
- Clouds and the Earth's Radiant Energy System (CERES)

Quantities:

Land Cover
Snow Cover
Clouds
Temperature, Humidity
CO₂, CO, CH₄, O₃
Radiative Fluxes
Aerosol Information

SMAP (1/2015 – Present)

http://smap.jpl.nasa.gov

- Polar, Sun-Synchronous Orbit, Global Coverage
- Twice-daily Observations 6:00 AM/PM Equator Crossing
- Sensors:

Microwave Radiometer
Microwave Radar

Quantities: Soil Moisture Freeze-Thaw State

GRACE (3/2002 – Present)

http://www.jpl.nasa.gov/missions/details.php?id=5882

- Polar, Sun-Synchronous Orbit, Global Coverage
- 250 gravity profiles per day
- Sensors:

Microwave K-band ranging instrument Accelerometers Global Positioning System Receivers

Quantity:

Terrestrial Water

Jason-1 (12/2001 - 7/2013) & Jason-2 (6/2008-Present)

http://sealevel.jpl.nasa.gov/missions

Quantity:

Sea Level Height

- Polar, Sun-Synchronous Orbit, Global Coverage
- 10-day Repeat Time
- Focus on Ice-free Oceans
- Sensors:

Poseidon Altimeter (C- and Ku-band)
Jason Microwave Radiometer (JMR) (Jason-1)
Advance Microwave Radiometer (AMR) (Jason-2)
DORIS Doppler tracking antenna
Global Positioning System
Laser Retroreflector array

Altimeter Data used to observe Lake Levels

Earth System Models Provide Value-added Information

Remote Sensing + Surface Observations + Numerical Models

Satellite Data

Surface Measurements and In-Situ Data

Numerical Models

NASA Models Useful for Water Resources Management

(Atmosphere-Ocean-Land Models)

➤ GEOS-5: The Goddard Earth Observing System Version 5

MERRA: Modern Era Retrospective-analysis for Research and Application

GLDAS: Global Land Data Assimilation System

> NLDAS: North American Land Data Assimilation System

Land Information System (LIS)

http://lis.gsfc.nasa.gov

Global Land Data Assimilation System(GLDAS) North American Land Data Assimilation System (NLDAS)

http://ldas.gsfc.nasa.gov/

Integrate ground and satellite observations within sophisticated numerical models to produce physically consistent, high resolution fields of land surface states and fluxes

GLDAS and a Version of NLDAS use LIS with Different Sources of Inputs

Meteorological Analysis
Surface Solar Radiation
Precipitation
Soil Texture
Vegetation Classification and Leaf Area Index
Topography

Integrate Output for Water Resources

Soil Moisture Evapotranspiration Surface/Sub-surface Runoff Snow Water Equivalent

Satellite Data used in LDAS: MODIS, TRMM, GOES

This Training will Focus on the Following Satellites and Models for Monitoring Freshwater Components

Rain Amount
 Snow Cover
 Soil Moisture
 Evapotranspiration
 Runoff/Streamflow
 Lake Level Height
 (TRMM, GPM)
 (Terra and Aqua MODIS)
 (Terra and Aqua MODIS, Landsat, NLDAS/GLDAS)
 (TRMM,GPM, NLDAS/GLDAS)
 (Jason-2)

This Training will Focus on the Following Satellites and Models for Monitoring Freshwater Components

	Rain Amount	(TRMM, GPM)
	Snow Cover	(Terra and Aqua MODIS)
	Soil Moisture	(SMAP, NLDAS/GLDAS)
	Runoff/Streamflow	(TRMM,GPM, NLDAS/GLDAS)
	Lake Level Height	(Jason-1 and -2)
	Evapotranspiration	(Terra and Aqua MODIS, Landsat, NLDAS/GLDAS)
	Terrestrial Water	(GRACE)
	Regional Water Budget	(NLDAS/GLDAS)

Week-4

Week-3

Week-2

Week-5

This Training will Focus on the Following Satellites and Models for Monitoring Freshwater Components

	Rain Amount	(TRMM, GPM)
	Snow Cover	(Terra and Aqua MODIS)
	Soil Moisture	(SMAP, NLDAS/GLDAS)
	Run Off/Streamflow	(TRMM,GPM, NLDAS/GLDAS)
	Lake Level Height	(Jason-1 and -2)
	Evapotranspiration	(Terra and Aqua MODIS, Landsat, NLDAS/GLDAS)
	Terrestrial Water	(GRACE)
	Regional Water Budget	(NLDAS/GLDAS)

Week-2 Week-3 Week-4 Week-5

Data Search, Access, Analysis, and Visualization Tools

There are Multiple Web-based Tools for Water Resources Data Search, Analysis, and Download

Mirador

Precipitation, LDAS -Run Off, Soil Moisture, ET

http://mirador.gsfc.nasa.gov

Reverb-ECHO

Selected Water Resources Data

http://reverb.echo.nasa.gov/reverb

Giovanni-4

Geospatial Interactive Online Visualization And aNalysis

http://giovanni.gsfc.nasa.gov/giovanni

Infrastructure -- Selected Data Access [Precipitation, LDAS –

Run Off, Soil Moisture, ET

PPS-STORM

Precipitation Processing Systems - Science Team

https://storm.pps.eosdis.nasa.gov/storm On-Line Request Module [Precipitation]

NSIDC, JPL Snow Server

Snow Cover

http://nsidc.org

http://snow.jpl.nasa.gov/portal/data/map/

GFMS

Global Flood Monitoring System [Run Off/Streamflow]

http://flood.umd.edu/

USDA

Crop Explorer

Reservoir Height

http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir

Water Resources Data Applications

Freshwater components crucial for the following Activities

Water Allocation

Water Budget including all

the freshwater components

Agricultural and Irrigation Management

Precipitation
Soil Moisture
Evapotranspiration

Flood/Drought Management

Precipitation
Runoff/
Streamflow
Soil Moisture
Evapotranspiration

Ground Water

Reservoir/Dam Management

Reservoir Height Precipitation Runoff/ Streamflow

NASA Observations and Modeling Systems Offer Capabilities to Monitor Water Balance in the Nile Basin

http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4044

Precipitation TRMM (Precipitation) Jul Sharcum TRMM Composite Climatology TRMM Composite Climatology Randall in mm day Randall in mm day

Soil Moisture LDAS (Soil Moisture) Astriction LDAS Near-Surface Soil Moisture (Top 10 cm) LDAS Near-Surface Soil Moisture (Top 10 cm)

Applied Sciences Project Scientist: Ben Zaitchik (Johns Hopkins University)

Nile - Basin Scale Water Balance

Courtesy: Ben Zaitchik (Johns Hopkins University)

Irrigation Management Using Satellite-based ET

http://ecocast.arc.nasa.gov/dgw/sims/

Collaborators and Stakeholders: California Department of Water Resources, Western Growers Association, University of California Cooperative Extension, USDA Agricultural Research Service, NOAA National Weather Service, Tanimura & Antle, Farming D Ranch, Pereira Bros. & Sons, Booth Ranches, Fresh Express, Ryan Palms Farms, Del Monte, Inc., Constellation Wines, E. & J. Gallo, Meyer Farms

http://appliedsciences.nasa.gov/programs/water-resources-program

Project Scientist: Forrest Melton, NASA ARC-CREST / California State University

A Drought Monitoring Decision Support Tool for the Navajo Nation

http://develop.larc.nasa.gov/2015/summer term/NavajoNationClimateII.html

Stakeholders: Navajo Nation

Based on Precipitation Index from TRMM and GPM

A Drought Monitoring Decision Support Tool for Customized Calculation of a Standardized Precipitation Index Value in the Navajo Nation LOCATION

NASA Ames Research Center

National Drought Monitoring with GRACE Terrestrial Water Data

http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx

Products are currently being evaluated

NASA Satellites Allow USDA to See World's Lakes Rise and Fall

http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/

Jason-2 Geo-referenced 20Hz Along Track Reference Pass 133 Cycle 70

Streamflow Estimates, Flood Detection, Landslide Estimation

Home Work

Please review the presentation on "Fundamentals of Remote Sensing" before the next session:

https://arset.adobeconnect.com/fundrssession1/event/registration.html

Complete the following on-line Assignment by **November 15, 2015**:

https://docs.google.com/forms/d/1xDzBArgzUMsh3-JolBacWBw1I QWZG6IrtKpkV-KDp0/viewform

Coming Up Next Week

- Overview of NASA Precipitation and Soil Moisture Data
- Live Demonstration of Precipitation and Soil Moisture Data Access

Thank You!

Amita Mehta

email: amita.v.mehta@nasa.gov