

## **ARSET**

**Applied Remote Sensing Training** 

http://arset.gsfc.nasa.gov



@NASAARSET

# Applications of Remote Sensing to Soil Moisture and Evapotranspiration

Speakers:

Erika Podest

Amita Mehta

Guest Speaker:

Christopher Hain, NOAA, <a href="mailto:christopher-hain">christopher Hain, NOAA, <a href="mailto:christopher-hain">christopher-hain</a></a>

## Homework and Certificate

#### Homework

- Answers to homework questions via Google form
- will be Available at <a href="http://arset.gsfc.nasa.gov/water/webinars/apps-et-smap">http://arset.gsfc.nasa.gov/water/webinars/apps-et-smap</a>

## Certificate of Completion

- Attend all 5 webinar sessions
- Complete both homework assignments
- Certificates will be emailed approx. 2 months after the course finishes by Marines Martins (marines.martins@ssaihq.com)

## **Course Material**

## http://arset.gsfc.nasa.gov/water/webinars/apps-et-smap





# Agenda: Week 5

- ALEXI ET and Applications
- ET and Soil Moisture Data from Global and North American Land Data Assimilation Systems (GLDAS and NLDAS): Data Access and QGIS Analysis



## ET and Soil Moisture from Land Surface Models

Land Data Assimilation System (LDAS): <a href="http://ldas.gsfc.nasa.gov">http://ldas.gsfc.nasa.gov</a>

Integrate satellite and ground observations within sophisticated numerical models with water

and energy balance



#### **GLDAS**

Get GLDAS data from the HDISC: via FTP (GLDAS-1 and GLDAS-2); via GDS.

GLDAS Phase 1 (1979-present) View README file.

GLDAS Phase 2 (1948-2012) View README file.

#### **NLDAS**

Get NLDAS data from the HDISC: via FTP; via GDS.

NLDAS Phase 1 (1996-2007) View README file.

NLDAS Phase 2 (1979-present): View README file.

#### **FLDAS**

Get FLDAS data from the HDISC: via FTP; via the GES DISC; View README file.

# North American Land Data Assimilation System-2 (NLDAS-2)

http://ldas.gsfc.nasa.gov/nldas

Four Land Surface Model Versions: NLDAS-2 Mosaic, Noah, SAC, and VIC

## Inputs:

- Precipitation: NOAA-CPC rain gauges
- Meteorological: North American Regional Reanalysis (NARR)
- Surface Shortwave Radiation Data: NARR with GOES satellite bias-correction

#### **Integrated Outputs Include:**

- Soil Moisture
- Evapotranspiration
- Surface/Sub-Surface Runoff
- Snow Water Equivalent



Courtesy of David Mocko, NASA GSFC

http://ldas.gsfc.nasa.gov/nldas/presentations/NLDAS-LIS-status-future 2015-03-11.pdf

# Global Land Data Assimilation System (GLDAS)

http://ldas.gsfc.nasa.gov/gldas/

Four Land Surface Model Versions: Noah, CLM2, Mosaic, and VIC

#### Inputs:

- Rainfall: TRMM and Multi-Satellite Based Data
- Meteorological Data: Global reanalysis and observations-based data from Princeton
- Vegetation Mask, Land/Water Mask, Leaf Area Index: MODIS (GLDAS-2)
- Clouds and Snow (for surface radiation);
   NOAA and DMSP satellites

## **Integrated Output Include**

- Soil Moisture
- Evapotranspiration
- Surface/Sub-Surface Runoff
- Snow Water Equivalent

Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. K. Entin, J. P. Walker, D. Lohmann, and D. Toll, 2004. The Global Land Data Assimilation System. Bulletin of the American Meteorological Society, 85(3):381–394.

# LDAS Soil Moisture and ET Data Access

| Model             | Spatial/Temporal Resolutions                                                                              | Data Source                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| GLDAS (NOAH)      | <ul> <li>1/4<sup>th</sup> – 1 degree (global)</li> <li>3 hour, monthly</li> <li>1948 – 2010</li> </ul>    | Giovanni:  http://giovanni.gsfc.nasa.gov/ giovanni |
| NOAH (v 2.1)      | • 2000 – present                                                                                          |                                                    |
| VIC               | • 1979 – present                                                                                          | Mirador:                                           |
| NLDAS (NOAH, VIC) | <ul> <li>1/8<sup>th</sup> – 1 degree (global)</li> <li>1 hour, monthly</li> <li>1979 - present</li> </ul> | http://mirador.gsfc.nasa.gov/                      |

Original data files are in GRIB format

# Soil Moisture and Evapotranspiration Data Access

- Demonstration
- Examples: Access and Download:
  - 1) GLDAS VIC data using Mirador
  - 2) NLDAS VIC data using Giovanni and import into QGIS

http://mirador.gsfc.nasa.gov/



GLDAS Noah Land Surface Model L4 monthly 0.25 x 0.25 degree V2.0 (GLDAS\_NOAH025\_M) View Files Info Data Calendar Approx. 2 files found (Avg Size: 19.38 MB) Parameters: SURFACE PRESSURE, HEAT FLUX, LONGWAVE RADIATION, SHORTWAVE RADIATION, SURFACE TEMPERATURE, EVAPOTRANSPIRATION, RUNOFF... Spatial Resolution: 0.25 degree x 0.25 degree Temporal Resolution: 1 month \$\infty\text{LDAS VIC Land Surface Model L4 3 Hourly 1.0 x 1.0 degree V001 (GLDAS VIC10 3H) View Files Info Data Calendar Approx. 248 files found (Avg Size: 0.56 MB) Parameters: EVAPOTRANSPIRATION, HUMIDITY, SURFACE WINDS, SNOW WATER EQUIVALENT, RUNOFF, SOIL MOISTURE/WATER CONTENT, SNOW... Spatial Resolution: 1 degree x 1 degree Temporal Resolution: 3 hours \$LDAS VIC Land Surface Model L4 Monthly 1.0 x 1.0 degree V001 (GLDAS\_VIC10\_M) View Files | Info | Data Calendar Approx. 2 files found (Avg Size: 0.51 MB) Parameters: EVAPOTRANSPIRATION, HUMIDITY, SURFACE WINDS, SNOW WATER EQUIVALENT, RUNOFF, SOIL MOISTURE/WATER CONTENT, RAIN... Spatial Resolution: 1 degree x 1 degree Temporal Resolution: 1 month

Choose







## Search, Select, and Download Data from Giovanni

http://giovanni.gsfc.nasa.gov/giovanni/



## Search, Select, and Download Data from Giovanni



## Plot Data in Giovanni



## Plot Data in Giovanni



# Download Data Using Giovanni

#### Browse History

#### Time Averaged Map

- User Input
- Plots
- Plot Options
- Downloads
- Lineage

Click on file links to download. Files contain data portrayed in the plot images.

#### NetCDF:

g4.timeAvgMap.NLDAS VIC0125 M 002 soilmlyr1.20160701-20160731.125W 25N 67W 53N.nc g4.timeAvgMap.NLDAS VIC0125 M 002 evpsfc.20160701-20160731.125W 25N 67W 53N.nc

#### PNG:

g4.timeAvgMap.NLDAS VIC0125 M 002 soilmlyr1.20160701-20160731.125W 25N 67W 53N.png g4.timeAvgMap.NLDAS VIC0125 M 002 evpsfc.20160701-20160731.125W 25N 67W 53N.png

#### GEOTIFF:

g4.timeAvgMap.NLDAS VIC0125 M 002 soilmlyr1.20160701-20160731.125W 25N 67W 53N.geotif g4.timeAvgMap.NLDAS VIC0125 M 002 evpsfc.20160701-20160731.125W 25N 67W 53N.geotif

#### KMZ:

g4.timeAvgMap.NLDAS VIC0125 M 002 soilmlyr1.20160701-20160731.125W 25N 67W 53N.kmz g4.timeAvgMap.NLDAS VIC0125 M 002 evpsfc.20160701-20160731.125W 25N 67W 53N.kmz

NetCDF, Geotiff, kmz, and png files

## Import NLDAS ET and Soil Moisture NetCDF Files in QGIS

- Install QGIS on your computer:
  - http://bit.ly/ARSET\_QGIS\_Download
     and Install
- Open QGIS and OpenStreetMap
  - From top bar click on 'Web'
  - Select 'OpenLayers Plugin'
  - Select a background map (our exercise uses 'OpenStreetMap')



# Import NLDAS ET and Soil Moisture NetCDF Files in QGIS

- Select 'Add Raster'
- Load the NLDAS ET and soil moisture NetCDF data files one by one



# Import NLDAS ET and Soil Moisture NetCDF Files in QGIS

You will get a black & white image of the data



# Change Data Layer Properties

- Click on 'layer' on the top bar and select 'properties' to edit the map visualization & analysis
- Select 'Style' in 'Render Type' and select 'Singleband pseudocolor'
- Choose color table from 'Generate new color map'
- Choose 'mode' as continuous or 'Equal Interval'
- Click on 'Apply' and 'OK'



# Change Data Layer Properties



- From 'Layer' in the top bar, select 'properties'
- From the left side menu, select 'Transparency'
- Choose the appropriate % value to see the OpenStreetMap under the ET layer



# ET and Soil Moisture Layers

• Repeat for the 'Layer,' 'Properties' steps for the soil moisture layer



# **Course Summary**

This course provided information about:

- NASA's Soil Moisture Active Passive (SMAP) mission, soil moisture data from SPAM and its applications in the fields of agriculture, flood and drought monitoring, weather and climate forecasting, and human health
- SMAP data access from NASA's National Snow & Ice Data Center (NSIDC): <a href="http://nsidc.org">http://nsidc.org</a>
- Evapotranspiration estimates based on Landsat (METRIC) and its access from EEFLUX: <a href="http://eeflux-level1.appspot.com">http://eeflux-level1.appspot.com</a>
- Evapotranspiration estimates from MODIS/GOES (ALEXI) and its access from NOAA: <a href="http://www.ospo.noaa.gov/Products/land/getd">http://www.ospo.noaa.gov/Products/land/getd</a>
- Evapotranspiration estimates based on Land Data Assimilation Models and its access from:
  - Mirador: <a href="http://mirador.gsfc.nasa.gov">http://mirador.gsfc.nasa.gov</a>
  - Giovanni: http://giovanni.gsfc.nasa.gov/giovanni

# Thank You

Sign up to receive updates on future ARSET trainings:

http://lists.nasa.gov/mailman/listinfo/arset