

ARSET

Applied Remote Sensing Training

http://arset.gsfc.nasa.gov

@NASAARSET

Remote Sensing Training: Methods & Best Practices

October 13, 2016

Ana Prados, Brock Blevins, and Elizabeth Hook

www.nasa.gov

Webinar Series Outline

- Week 1: Overview, October 13
 - Steps Before Conducting a Training: develop a capacity building mission statement, conduct end-user needs assessments, build a network, promote your training, and create a effective presentations
- Week 2: Onsite Training, October 20
 - Online versus onsite trainings and how to develop onsite trainings, including training levels
 (introductory to advanced), training structure, developing case studies and hands-on exercises,
 timelines, and program evaluation
- Week 3: Online Training, October 27
 - How to develop online trainings, including training levels (introductory to advanced), design of online presentations, assignments and exercises, software, and timelines.

Seven Steps to a Successful Remote Sensing Training

- 1. Develop a Training Mission Statement (Week 1)
- 2. Assess End-User Needs (Week 1)
- 3. Build a Network (Week 1)
- 4. Training Promotion (Week 1)
- 5. Develop Training Material (Weeks 1-3)
- 6. Conduct the Training (Weeks 2-3)
- 7. Evaluate the Training (Week 2)

Learning Objectives

- Understand the key steps needed to develop an online or onsite training
- Learn how to build a network of end-users, assess their needs, and advertise trainings
- Learn how to develop and deliver effective training materials for remote sensing applications

ARSET Team

GSFC: 8; ARC: 3; JPL: 2; MSFC: 1; Consultant: 1

Program Support

Ana Prados, Program Manager (GSFC)
Brock Blevins, Training Coordinator (GSFC)
David Barbado, Spanish Translator (GSFC)
Annelise Carleton-Hug, Program Evaluator
(Consultant)
Elizabeth Hook, Technical Writer/Editor (GSFC)
Marines Martins, Project Support (GSFC)

Disasters & Water Resources

Amita Mehta, Disasters Lead (GSFC) Tim Stough, Water Lead (JPL) Erika Podest, Instructor (JPL)

Land & Wildfires

Cynthia Schmidt, Lead (ARC)
Amber Jean McCullum, Instructor (ARC)
Sherry Palacios, Instructor (ARC)

Health & Air Quality

Pawan Gupta, Air Quality Lead (GSFC) Melanie Cook, Instructor (GSFC) Sue Estes, Health Lead (MSFC)

Acknowledgement: We wish to thank Nancy Searby for her support

Applied Remote Sensing Training Program (ARSET)

http://arset.gsfc.nasa.gov/

- Eight year's experience conducting online and onsite remote sensing training
- Part of NASA's Applied Sciences Program
- Goal: increase the use of Earth Science in decision-making through training for
 - policy makers
 - environmental managers
 - other professionals in the public and private sector

Disasters

Ecoforecasting

Health & Air Quality

Water Resources

Wildfires

Applied Remote Sensing Training Program (ARSET)

http://arset.gsfc.nasa.gov/

Online Webinars

- 1 hr a week, 4-6 weeks
- Live & recorded
- Includes demos on data access

Onsite Training

- Held in a computer lab for 2 - 4 days
- Focus on data access
- Locally relevant case studies

Train the Trainers

 Courses & training manuals for those interested in doing their own remote sensing trainings

ARSET Training Levels

Both Online & Onsite

Fundamentals

Level 0

- Webinars
- Assumes no prior remote sensing knowledge
- Examples:
 - Fundamentals of Remote Sensing
 - Satellites, Sensors, Data and Tools for Land Management and Wildfire Applications

Basic Trainings

Level 1

- Online and Onsite Training
- Requires basic knowledge of remote sensing
- More general applications
- Example:
 - Introduction to Satellite Remote Sensing for Air Quality Applications
 - Using NASA Remote
 Sensing for Disaster
 Management

Advanced Trainings

Level 2

- Online and Onsite Training
- Requires basic training
- Technically challenging topics
- Specific applications with regional case studies
- Example:
 - Advanced Webinar: Creating and Using Normalized Difference Vegetation Index (NDVI) from Satellite Imagery

ARSET Trainings

Impacts & Accomplishments

2010: 2012: 2012: 2013: 538 2014: 1014 2015: 2496 2016: 3014

2009: 2011:

235 166

44 onsite training

140+ countries

ARSET's Global Footprint

- 79 trainings
- 7,900+ participants
- 1,600+ organizations
- 140+ countries
- All 50 U.S. States

Outline: Week 1

- 1. Develop a Training Mission Statement
- 2. Assess End-User Needs
- 3. Build a network
- 4. Promote the training
- 5. Develop the training material

What is a mission statement?

- Establishes key purpose and direction of a program or project
- States intended audience and value of the program to that audience

To increase the use of remote sensing resources by environmental managers for decision-support. This is accomplished through onsite and online training that teaches participants how to access, visualize, and apply Earth science data.

What is a mission statement?

- Establishes key purpose and direction of a program or project
- States intended audience and value of the program to that audience

To increase the use of remote sensing resources by environmental managers for decision-support.

This is accomplished through onsite and online training that teaches participants how to access, visualize, and apply Earth science data.

Purpose of the program: build capacity to use remote sensing resources through training

What is a mission statement?

- Establishes key purpose and direction of a program or project
- States intended audience and value of the program to that audience

To increase the use of remote sensing resources by environmental managers for decision-support.

This is accomplished through onsite and online training that teaches participants how to access, visualize, and apply Earth science data.

Audience: environmental managers and policy makers

What is a mission statement?

- Establishes key purpose and direction of a program or project
- States intended audience and value of the program to that audience

To increase the use of remote sensing resources by environmental managers for decision-support. This is accomplished through onsite and online training that teaches participants how to access, visualize, and apply Earth science data.

Impact/Value: help improve participants' decision making

Does your capacity building program or training program have a mission statement?

If so, please type the statement into the Q&A pod followed by the name of your program and whom you target for your trainings.

If you do not currently have a capacity building program or training program, you can also submit what you intend for your mission statement to be.

Relevant Terms

- Participant: a person or organization who attends a remote sensing training
- End-user: a person or organization who uses remote sensing data and applies it to an environmental problem or question
 - May be a decision-maker and may use data to make decisions
- Stakeholder: a person or organization who benefits or is impacted by remote sensing data, information or decisions derived from the data

Why are end-user needs important?

Assess End-User Needs

- Trainers need to understand the needs of participants
- Conduct assessments systematically
- Trainers can tailor content appropriately according to:
 - technical level of expertise of participants
 - sector of the participant (academic, non-profit, government)
 - type of environmental challenge or question participants are seeking to address
 - other factors, to be discussed later in the course

Tools for End-User Needs Assessments

- Training registration
- Interviews with key informants
- Informal forums during online trainings (such as used in this training!)
- Anonymous surveys (pre or post training)
- Working groups (e.g.)
 - End-users
 - Organizations that work with end-users
 - Remote sensing product developers
- Interactions with professional organizations

How to Conduct an End-User Needs Assessment

- Collaborate with stakeholders who understand the needs of the community
 - Regional organizations
 - Professional associations
- Ask the right questions to understand barriers and needs:
 - What is preventing you or your organization from fully using remote sensing resources?
 - What is your organization's main type of research or environmental management activity?
 - What specific question or challenge is your organization trying to address?
 - What type of training is your organization interested in?
- Assess if the research question or management activity of a prospective participant can benefit from remote sensing

End-User Needs Assessments

- Why are you taking this webinar? What are you looking to learn?
- Does your program collect end-user needs? If so, how?

Why build a network?

- Helps to identify stakeholders and potential collaborators for developing trainings
- Provides a list of end-users to invite to future trainings
- Provides a list of end-users and stakeholders that can be polled for conducting end-user needs assessments
 - Allows for training content to be tailored to the intended audience
 - Informs future training topics

End-User Database

Build a Network

- Enter information about participants or organizations into a database sortable by:
 - Country
 - Region
 - Sector
 - Organization
 - Training Theme Participation
- Use the database to identify gaps
 - Geographical regions
 - Sector
 - Organizations

Identify Potential Participants

Training Promotion

Examine again **your** mission statement and the results of your end-user needs assessments to identify appropriate potential organizations, sectors, or regions for participation in your training activity

ARSET promotes trainings to the following:

- Applied science professionals and decision-makers
- Organizations with demonstrated environmental need
- Previously unreached organizations
- A sector or geographic region with traditionally low engagement
- Organizations with high potential for future collaboration
- Stakeholders with unique knowledge of their community's decision support system (DSS)

Means to Promote a Training

- Email
 - Listservs
- Existing websites, portals, & groups from stakeholders or other organizations
- Networking
- Social Media

Example: ARSET's Process Promote Trainings

- Email
- Listserv (1,260)
- Existing websites, portals and groups from stakeholder or other organizations
 - FedCenter, eoPortal, GWP, US Water Partnership, etc.
- Targeted outreach strategy for collaborative trainings
- Outreach Database (2,700+)
- Twitter (~1,900)

Example: ARSET Twitter @NASAARSET

Advertise & Promote Trainings

- Have a clear idea of your account's purpose
- Post & Engage Regularly
- Maintain a schedule to post tweets, with retweets from other organizations filling in the gaps
- During trainings:
 - Have pre-planned tweets
 - Be prepared to supplement if there's interesting information or conversation
 - Pay attention to any replies or questions in real time
- In addition to posting regularly, keep track of the mentions and conversations happening about your program

Training Promotion Methods

- How does your program advertise trainings? What works well for you?
- Are there any other tools for training promotion you would like to learn about?

How to Build Effective Presentations

Develop Training Material

- Be aware of the context for your presentation what questions do the training participants face?
- The pace of the presentation depends on the audience
 - Speak slower (at least 30%) if your audience has little to no experience with your subject matter
- Speak clearly and use a microphone if needed
- Define acronyms and terms early in the presentation
- Practice, practice, practice

Developing Slides Develop Training Material

Effective Presentations Should...

- be for the audience
- keep the presenter on track and focused
- reinforce ideas not repeat them

- Be consistent
- Pay attention to detail
- Keep it simple

- Be consistent
- Pay attention to detail
- Keep it simple

- Be consistent
- Pay attention to detail
- Keep it simple

- Text format
 - the same font
 - the same font size
 - the same color
 - in the same place on a slide
- Images
 - aligned properly
 - correct ratio
 - credit images
- Points on your slide
 - sentences or phrases
 - capitalization
 - verb tenses
 - use the same bullets

- Be consistent
- Pay attention to detail
- Keep it simple

- Text format
 - the same font
 - the same font size
 - the same color
 - in the same place on a slide
- Images
 - aligned properly
 - correct ratio
 - credit images
- Points on your slide
 - sentences or phrases
 - capitalization
 - verb tenses
 - use the same bullets

- Be consistent
- Pay attention to detail
- Keep it simple

- Balance between writing everything you want to say and providing highlights
- One idea per slide
- You might have too much content if:
 - you feel you need to use many bold colors to draw attention
 - you have to shrink your text
 - your slide is a solid wall of text

- <u>Spatial Resolution</u> is decided by its pixel size pixel is the smallest unit measured by a sensor
 - Refers to the detail discernable in an image by a pixel
- <u>Temporal Resolution</u> is how frequently a satellite observes the same area of the Earth
 - The time it takes for a satellite to complete one orbit cycle; also called "revisit time"
 - Depends on satellite/sensor capabilities, swath overlap, and latitude

Sensor	Revisit Time
Landsat	16 days
MODIS	2 days
Commercial (OrbView)	1-2 days

Sensor	Spatial Resolution
Digital Globe (and others)	<1 -4 m
Landsat	30 m
MODIS	250m – 1 km
Global Precipitation Mission (GPM) Dual Frequency Radar	5 km

- Spatial Resolution is decided by its pixel size pixel is the smallest unit measured by a sensor
 - Refers to the detail discernable in an image by a pixel
- Temporal Resolution is how frequently a satellite observes the same area of the Earth
 - The time it takes for a satellite to complete one orbit cycle; also called "revisit time"
 - Depends on satellite/sensor capabilities, swath overlap, and latitude

Sensor	Revisit Time
Landsat	16 days
MODIS	2 days
Commercial (OrbView)	1-2 days

Sensor	Spatial Resolution
Digital Globe (and others)	<1 -4 m
Landsat	30 m
MODIS	250m – 1 km
Global Precipitation Mission (GPM) Dual Frequency Radar	5 km

18 pt

20	pt	
		7

- Spatial Resolution is decided by its pixel size pixel is the smallest unit measured by a sensor
 - Refers to the detail discernable in an image by a pixel
- Temporal Resolution is how frequently a satellite observes the same area of the Earth
 - The time it takes for a satellite to complete one orbit cycle; also called "revisit time"
 - Depends on satellite/sensor capabilities, swath overlap, and latitude

Sensor	Revisit Time
Landsat	16 days
MODIS	2 days
Commercial (OrbView)	1-2 days

Sensor	Spatial Resolution
Digital Globe (and others)	<1 -4 m
Landsat	30 m
MODIS	250m – 1 km
Global Precipitation Mission (GPM) Dual Frequency Radar	5 km

24 pt

- Spatial Resolution is decided by its pixel size pixel is the smallest unit measured by a sensor
 - Refers to the detail discernable in an image by a pixel
- Temporal Resolution is how frequently a satellite observes the same area of the Earth
 - The time it takes for a satellite to complete one orbit cycle; also called "revisit time"
 - Depends on satellite/sensor capabilities, swath overlap, and latitude

Sensor	Revisit Time
Landsat	16 days
MODIS	2 days
Commercial (OrbView)	1-2 days

Sensor	Spatial Resolution
Digital Globe (and others)	<1 -4 m
Landsat	30 m
MODIS	250m – 1 km
Global Precipitation Mission (GPM) Dual Frequency Radar	5 km

Spatial & Temporal Resolution

Spatial Resolution

- decided by its pixel size
- pixel is the smallest unit measured by a sensor
- refers to the detail discernable in an image by a pixel

Sensor	Spatial Resolution
Digital Globe (and others)	<1 - 4 m
Landsat	30 m
MODIS	250 m – 1 km
Global Precipitation Mission (GPM) Dual Frequency Radar	5 km

Temporal Resolution

- how frequently a satellite observes the same area of the Earth
- the time it takes for a satellite to complete one orbit cycle ("revisit time")
- depends on satellite/sensor capabilities, swath overlap, and latitude

Sensor	Revisit Time
Landsat	16 days
MODIS	2 days
Commercial (OrbView)	1-2 days

Seven Steps to a Successful Remote Sensing Training

- Develop a Training Mission Statement (Week 1)
- 2. Assess End-User Needs (Week 1)
- 3. Build a Network (Week 1)
- 4. Training Promotion (Week 1)
- 5. Develop Training Material (Weeks 1-3)
- 6. Conduct the Training (Weeks 2-3)
- 7. Evaluate the Training (Week 2)

Next Week: Onsite Trainings

- Online vs. Onsite Trainings
- How to Develop Onsite Trainings
 - Training Levels
 - Structure
 - Developing Case Studies & Hands-on Exercises
 - Timelines
 - Program Evaluation