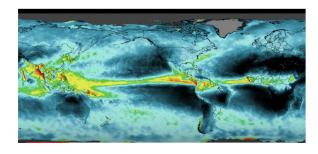
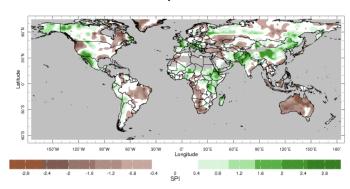


Applications of GPM IMERG¹ Reanalysis for Assessing Extreme Dry and Wet Periods

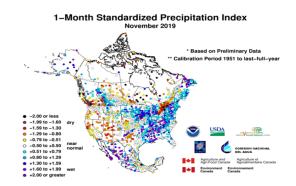

Amita Mehta and Sean McCartney

February 4, 2020

Training Outline



January 28, 2020


Calculation of Precipitation Statistics Using IMERG

January 30, 2020

Calculation of SPI based on IMERG to Monitor Wet and Dry Conditions

February 4, 2020

Flood and Drought Risk Assessment Based on IMERG Statistics and SPI

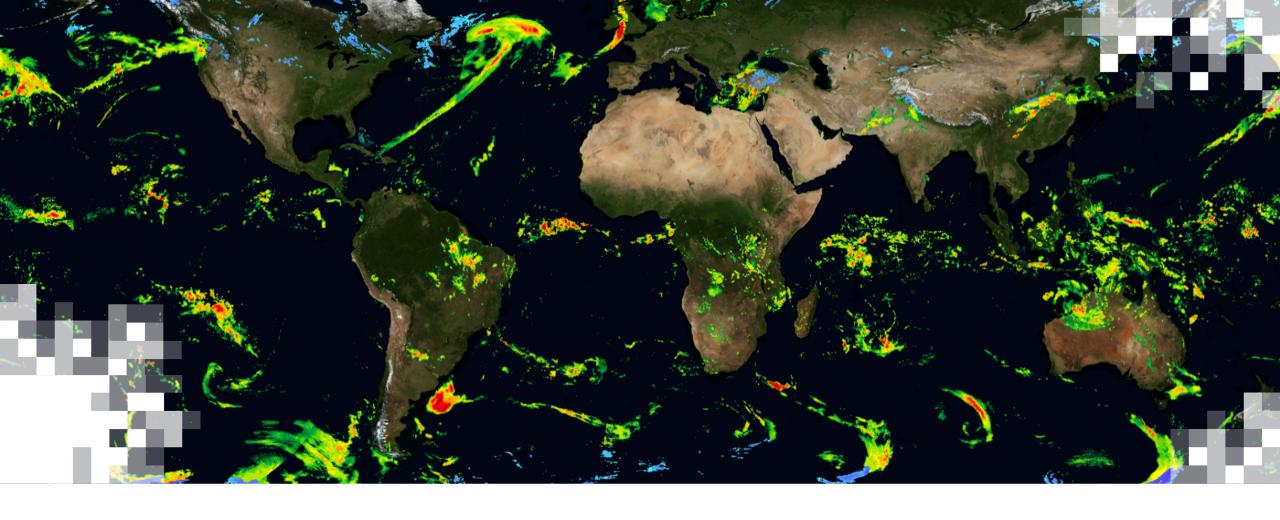
https://www.youtube.com/watch?time cont inue=9&v=qNIRQgACTFg&feature=emb title

https://iridl.ldeo.columbia.edu/maproom/Global/Precipita tion/SPI.html

https://www.ncdc.noaa.gov/monitoringcontent/temp-andprecip/drought/nadm/indices/spi/maps/ghcndna-1mon-spi-dot-pg.gif

Training Certification

- Homework Assignments are available for all three sessions from:
 - https://arset.gsfc.nasa.gov/water/webinars/IMERG-2020
 - Answers must be submitted via Google Form
 - Due dates: February 11, 18, and 25
- Certificate of Completion will be awarded to those who:
 - Attend all webinars
 - Complete all homework assignments
- You will receive a certificate approximately two months after the completion of the course from: marines.martins@ssaihq.com



Part-3 Outline

- Demonstration: Flood and Drought Risk Assessment
 - Case study: Mozambique → Maputo
- Summary and Concluding Remarks
- Exercise: Calculation of precipitation statistics and Standardized Precipitation Index (SPI) for an area of your interest

Demonstration: Flood and Drought Risk Assessment Case study: Mozambique

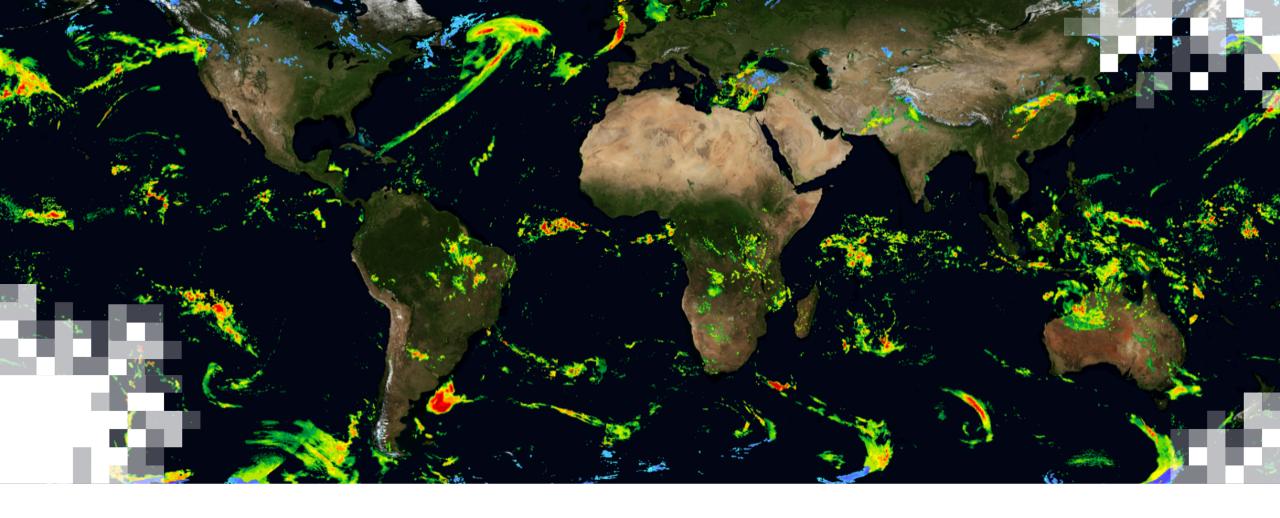
Maputo

Summary

- This webinar series focuses on access and analysis of long-term IMERG precipitation data for detection of dry and wet periods over a geographic region
- Demonstrations and step-by-step instructions were provided to:
 - Download IMERG seasonal and monthly data for a selected region using Giovanni (https://giovanni.gsfc.nasa.gov/giovanni/) and GES DISC https://disc.gsfc.nasa.gov/
 - Calculate maps and time series of precipitation mean, standard deviation, and anomalies using QGIS and Excel
 - Calculate SPI using Bash and Python
 - Display and analyze precipitation anomalies and SPI using Panoply and QGIS
 - Access, display, and analyze IMERG precipitation and socioeconomic data from SEDAC (https://sedac.ciesin.columbia.edu/)

Concluding Remarks

- For long-term mean precipitation and for SPI calculations, a 30-year climatology (or longer) is ideal, but should be consistently derived
- Global IMERG data provide state-of-the-art precipitation observations for 20 years with new data being added daily
- As seen in the Texas and Mozambique case studies, the SPI and precipitation anomalies show similar patterns of dry/wet conditions



Concluding Remarks (cont.)

- SPI has an advantage in that the same SPI values indicate the same strength of dry/wet events as it is based on probability of precipitation
- Precipitation anomalies indicate dry/wet conditions relative to mean precipitation and are more useful in estimating amount of water excess or deficit
- Along with socioeconomic data, past and current precipitation anomalies and SPI facilitate flood/drought risk assessment

Exercise: Calculation of precipitation statistics and Standardized Precipitation Index (SPI) for an **area of your** interest

Exercise 3a: IMERG Regional and Local Statistics

- m
- Select a geographic region of your interest (i.e. any country, state, city, or watershed)
- Follow the directions given in Exercise 1 to select and download IMERG seasonal mean data using Giovanni for the region you selected and note the main rainy season.
 - If you are choosing a region for which a standard shapefile is not available in Giovanni, use a bounding box on the map to select the region.
- For the rainy season in the region you chose, download individual seasonal data from 2000 to 2019 and calculate precipitation anomalies in QGIS following the steps provided in Exercise 1.
- Save the QGIS project for analysis and for answering questions in Homework 3.

Exercise 3b: IMERG Regional SPI

- Follow the directions given in Exercise 2 to download monthly IMERG data for the region you selected using GES DISC.
- Calculate 3-monthly SPI using the Python script and directions provided in Exercise 2.
- Display the SPI in Panoply **or** QGIS.
- Analyze and compare the patterns of precipitation anomalies and SPI.
- You will share these results in Homework 3.

Upcoming Training

In April ARSET will be hosting a webinar on Remote Sensing Applications for Agriculture and Food Security. Stay tuned for more information pertaining to this training and all upcoming trainings on our website:

https://arset.gsfc.nasa.gov/

ARSET Team Members

Program Support

- Ana Prados, Program Manager (GSFC)
- Brock Blevins, Training Coordinator (GSFC)
- Selwyn Hudson-Odoi, Training Coordinator (GSFC)
- Jonathan O'Brien, Technical Writer/Editor (GSFC)
- David Barbato, Spanish Translator (GSFC)
- Annelise Carleton-Hug, Program Evaluator (Consultant)
- Marines Martins, Project Support (GSFC)
- Stephanie Uz, Program Support (GSFC)

Acknowledgement:

We wish to thank Nancy Searby for her continued support

Disasters & Water Resources

- Amita Mehta (GSFC)
- Erika Podest (JPL)
- Sean McCartney (GSFC)

Land & Wildfires

- Amber Jean McCullum (ARC)
- Juan L. Torres-Pérez (ARC)

Health & Air Quality

- Pawan Gupta (MSFC)
- Melanie Cook (GSFC)

Contact information

Amita Mehta: <u>amita.v.mehta@nasa.gov</u>

Sean McCartney: sean.mccartney@nasa.gov

Thank You!

