

ARSET

Applied Remote Sensing Training

http://arset.gsfc.nasa.gov

0NASAARSET

NASA Remote Sensing Applications for Flood Monitoring and Management April 18-20, 2017

Training Team

Organizer: ARSET

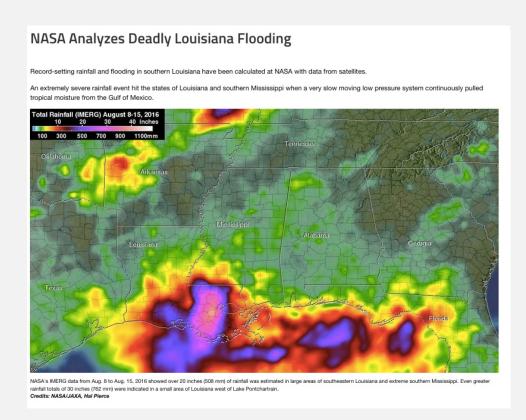
Amita Mehta and Erika Podest (Instructors)

Brock Blevins

Elizabeth Hook

Jessica Fayne

Host: Dewberry


Mathini Sreetharan

Seth Lawler

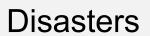
Course Objectives

By the end of the training, you will be able to:

- Analyze remote sensing data and use flood mapping web tools for flood management, including:
 - flood monitoring, warning, and planning relief activities
- In support of flood management strategies, access data on
 - past and current flood extent and intensity
 - rainfall and soil moisture data, Synthetic Aperture Data (SAR) data
 - terrain data
 - socioeconomic data

Presentation Outline

- About ARSET
- Training Overview
- Training Agenda



NASA's Applied Remote Sensing Training Program (ARSET)

http://arset.gsfc.nasa.gov/

- Empowering the global community through remote sensing training
- Part of NASA's Applied Sciences Capacity Building Program
- Goal: increase the use of Earth Science in decision-making through training for:
 - policy makers
 - environmental managers
 - other professionals in the public and private sector
- Trainings offered focusing on applications in:

Ecosystems

Health & Air Quality

Water Resources

ARSET Team

GSFC: 9; ARC: 3; JPL: 2; MSFC: 1; Consultant: 1

Program Support

Ana Prados, Program Manager (GSFC)

Brock Blevins, Training Coordinator (GSFC)

David Barbado, Spanish Translator (GSFC)

Annelise Carleton-Hug, Program Evaluator (Consultant)

Bryan Duncan, Program Support (GSFC)

Elizabeth Hook, Technical Writer/Editor (GSFC)

Marines Martins, Project Support (GSFC)

Acknowledgement: We wish to thank Nancy Searby for her continued support

Disasters & Water Resources

Tim Stough, Lead (JPL)

Amita Mehta, (GSFC)

Erika Podest, Instructor (JPL)

Land & Wildfires

Cynthia Schmidt, Lead (ARC)

Amber Jean McCullum, Instructor (ARC)

Sherry Palacios, Instructor (ARC)

Health & Air Quality

Pawan Gupta, Air Quality Lead (GSFC)

Melanie Cook, Instructor (GSFC)

Sue Estes, Health Lead (MSFC)

ARSET Training Levels

Fundamentals

Level 0

- Online only
- Assumes no prior knowledge of remote sensing
- Examples:
 - Fundamentals of Remote Sensing
 - Satellites, Sensors, Data, and Tools for Land Management & Wildfire Applications

Basic Trainings

Level 1

- Online and in-person
- Requires level 0 training or equivalent knowledge
- Specific applications
- Example:
 - Remote Sensing of Forest Cover & Change Assessment for Carbon Monitoring

Advanced Trainings

Level 2

- Online and in-person
- Requires level 1 training or equivalent knowledge
- More in-depth or focused topics
- Example:
 - Advanced Webinar: Land Cover Classification with Satellite Data

ARSET Training Formats

Online

- Available live & recorded
- Typically 1 hr session,
 1 per week, over 4-6
 weeks
- Available at all training levels:
 - Fundamentals of Remote Sensing
 - Introductory
 - Advanced

In-Person

- 2-7 days in length
- Held in a computer lab
- Mixture of lectures and exercises
- Locally relevant case studies
- Available levels:
 - Introductory
 - Advanced

Train the Trainers

- Trainings and materials
- Offered online & inperson
- For organizers seeking to develop their own applied remote sensing training programs

ARSET Trainings

8,000+ participants

countries

2,600+ organizations

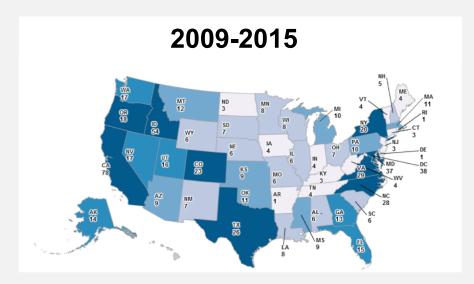
☐ 38 online trainings

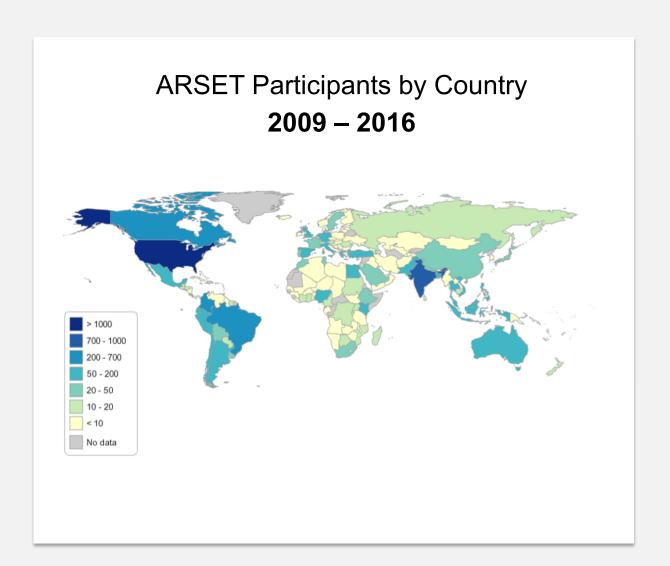
□ 45 in-person trainings

Disasters 7 trainings

Ecosystems 10 trainings

Health & Air Quality 48 trainings


Water Resources 14 trainings



Train the Trainers 1 training

ARSET's Global Footprint

- 83 trainings
- 8,000+ participants
- 2,600+ organizations
- 160+ countries
- All 50 U.S. States

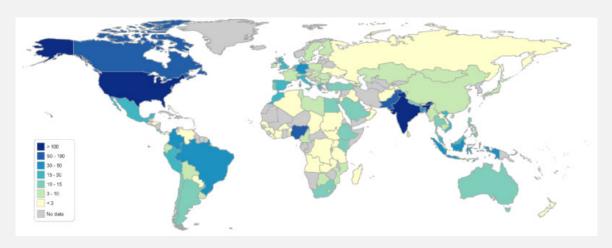
ARSET Disaster Training Impact (2013-2016)

All ARSET Participants (2009-2016): 8,348

5 online trainings

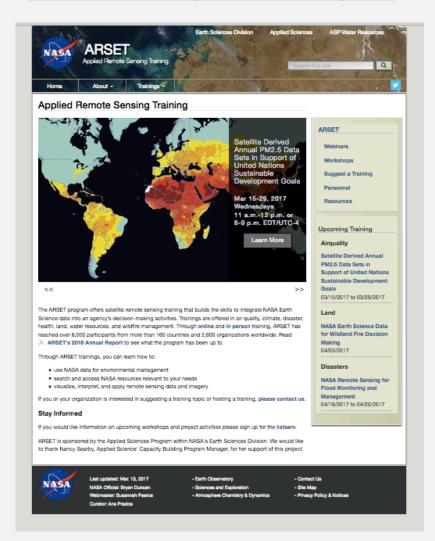
2 in-person trainings

772 organizations



119 countries

Disasters Participants by U.S. State (2013-2016)



Disasters Participants by Country (2014-2016)



ARSET Website

http://arset.gsfc.nasa.gov/

- Keep updated by signing up for the ARSET listserv:
 - https://lists.nasa.gov/mailman/listinfo/arset
- Get information about ongoing and upcoming trainings
- View training material, watch webinar recordings

Training Overview

The ultimate aim of this training is to present two different types of flood detection and mapping tools, and relevant remote sensing data useful for flood management.

Flood Tools:

1. Based on rainfall information

- Statistical models for flood detection use past rainfall information
- Physical models (hydrology and routing) use rainfall, land cover, soil moisture, terrain, and weather information

2. Based on land surface observations

 Surface characteristics (reflectance and emissivity) change when previously dry surface is inundated

Training Outline

Day	Topic	Application	
Day 1	Precipitation	 Flood warning and monitoring by tracking precipitation systems For hydrology model input 	
April 18, 2017	Digital Elevation	Identification of low-lying areasHydrological routing of flood water	
Day 2	Soil Moisture	Flood modeling	
April 19, 2017	Synthetic Aperture Radar Data Information	 Flood monitoring and mapping identification of post-flood water logged areas 	
Day 3 April 20, 2017	Flood Tools and Socioeconomic Data	 Flood Management Activities Monitoring streamflow and Surface inundation Assessing population and infrastructure under flooding 	

Training Agenda

Day	Topic	Data Access and Flooding Tools	
Day 1 April 18, 2017	Precipitation	PPS STORMGiovanniMirador	
	Digital Elevation	GDExQGIS and Python	
Day 2 April 19, 2017	Soil Moisture	• NSIDC	
	Synthetic Aperture Radar Data Information	• ASF	
Day 3 April 20, 2017 Flood Tools and Socioeconomic Data		GFMSMODIS-NRTERDSGDACSSEDAC	

Training Outline: Flooding Tools

GFMS	Global Flood Monitoring System
MODIS-NRT	Moderate Resolution Imaging Spectroradiometer Near Real-Time Inundation Mapping
GDACS-GFDS	Global Disasters Alert and Coordination System- Global Flood Detection System
DFO	Dartmouth Flood Observatory
ERDS	Extreme Rainfall Detection System

Training Agenda: Data Access Tools

PPS	Precipitation processing System
Giovanni	Geospatial Interactive Online Visualization ANd aNalysis Infrastructure
GDEx	Global Data Explorer
QGIS	Quantum Geographic Information System
NSIDC	National Snow and Ice Data Center
ASF	Alaska SAR (Synthetic Aperture Radar) Facility
SEDAC	Socio-Economic Data and Applications Center

Training Agenda: Flood Case Studies

- This training will focus primarily on two case studies:
 - 1. Flooding in California, January 2017 (Pineapple Express!)
 - 2. Flooding in North Carolina, October 2016 (Hurricane Matthew)
- There will be an opportunity to analyze a flood case of your choice on Day 3

Training Agenda for 18 April 2017 : Session 1A

Time	Title and Topics	Type	Person
8:30-9:00	Introduction	Presentation	Mike Walsh
9:00-9:30	Applied Sciences Program on Disaster Management	Presentation	John Murray
9:30-9:45	About ARSET, Training Outline	Presentation	Amita Mehta
9:45-10:30	Overview of TRMM and GPM Precipitation Data	Presentation	Amita Mehta
10:30-10:45	Break		
10:45-12:30	Install and test QGIS; Precipitation data access & analysis in QGIS	Exercise	Amita Mehta, Erika Podest, & Jessica Fayne
12:30-1:30	Lunch Break		d Domoto Sonsing Training Program 21

Training Agenda for 18 April 2017 : Session 1B

Time	Title and Topics	Туре	Person
1:30-2:00	Overview of DEM from the Shuttle Radar Topography Mission and ASTER	Presentation	Amita Mehta
2:00-2:15	Data Access Tools: GDEX CGIAR	Demonstration	Amita Mehta
2:15-3:00	Install & Test Python, Extract Precipitation Data Using Python Script	Exercise	Jessica Fayne, Amita Mehta, & Erika Podest
3:00-3:15	Break	Break	
3:15-3:45			
3:45-5:00	Terrain and Slope Data; Analysis of precipitation and DEM data	Exercise	Amita Mehta, Jessica Fayne, & Erika Podest

