

ARSET Applied Remote Sensing Training http://arset.gsfc.nasa.gov

Remote Sensing of Drought

July 19, 2017 Week 2

Speakers: Amber McCullum Amita Mehta Cynthia Schmidt amberjean.mccullum@nasa.gov amita.v.mehta@nasa.gov cynthia.l.schmidt@nasa.gov

Homework and Certificates

- Homework
 - Answers must be submitted via Google Form
- Certificate of Completion:
 - Attend both webinars
 - Complete the homework assignment by the deadline (access from ARSET website)
 - HW Deadline: August 2nd
 - You will receive certificates approx. two months after the completion of the course from:

marines.martins@ssaihq.com

Prerequisites

- Fundamentals of Remote Sensing
 - Sessions 1, 2A, and 2B
 - On demand webinar, available anytime
 - <u>http://arset.gsfc.nasa.gov/webinars/</u> <u>fundamentals-remote-sensing</u>
- Download and install QGIS
 - <u>https://www.qgis.org/en/site/forusers/</u> <u>download.html</u>
 - Open software to ensure it is working properly

Course Material

Webinar recordings, presentations, in class exercises, and homework are available at: http://arset.gsfc.nasa.gov/water/webinars/drought17/

Course Agenda:

, Agenda.pdf

Remote Sensing-Based Drought Monitoring

July 12, 2017

This session will include an overview of drought classification, an introduction to web-based drought monitoring tools, a demonstration of drought data visualization tools, and end with an exercise for attendees to practice downloading data.

- · View the Recording »
- Presentation Slides (English) »

Drought Monitoring Analysis and Application

July 19, 2017

This session will include a demonstration of soil moisture, groundwater, NDVI, and evapotranspiration (ET) data access and visualization, and will use a case study (California) exercise to demonstrate how participants can analyze drought conditions. Background will also be provided for a case study (northern Africa) to be used by participants to independently conduct their own analysis.

- View the Recording »
- Presentation Slides (English) »
- · Homework Assignment »

Course Outline

Session 2: Drought Monitoring Analysis and Application

Session 2 Agenda

- Demonstration of Web-Based Tools to Monitor Soil Moisture, Evapotranspiration, and Ground Water Storage for Drought Monitoring
- Exercise: Analysis of Precipitation and NDVI Anomalies for Drought Monitoring
- Summary
- Q and A

California's precipitation deficit from 2012-2014 via TRMM (NASA Global Climate Change)

Demonstration of Web-Based Tools to Examine Soil Moisture, Evapotranspiration, and Ground Water for Drought Monitoring

Monitoring Soil Moisture

https://worldview.earthdata.nasa.gov/

- Since early 2015, the SMAP mission provides global soil moisture observations that can be used to monitor soil moisture variability from day-to-day and month-to-month
- Daily and monthly soil moisture data can be visualized using NASA Worldview

Soil Moisture Anomalies for Drought Monitoring

http://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring/gl_Soil-Moisture-Monthly.php

- NOAA Climate Prediction Center provides calculated monthly soil moisture climatology (19701-2000) and anomalies for present-day and the past 12 months
- These maps visually provide indications of soil moisture deficit and drought conditions

Calculated Soil Moisture Anomaly (mm) MAY, 2017

ET for Drought Monitoring http://eeflux-level1.appspot.com/

- Landsat-based evapotranspiration images are available online at 30m resolution (see <u>https://arset.gsfc.nasa.gov/sites/defa</u> <u>ult/files/water/ET-SMAP/week4.pdf</u> for details)
- These maps provide information about changing ET, indicative of agricultural and hydrological drought conditions

Landsat-Based ET for July 17, 2015

Reference: https://c3.nasa.gov/water/static/media/other/Day1_S1-3_Allen.pdf

GRACE-Based Water Storage Anomalies for Drought Monitoring

http://geoid.colorado.edu/grace/dataportal.html

Time Selection

YYYY:DY

DY=Decimal Year

Day of Year/365

DY=0.79

Represents 0.71*365=259th Day of the Year = 15 September

2015.71 selects data for September 2015

Exercise: Analysis of Precipitation and NDVI Anomalies for Drought Monitoring

Summary

- Multiple historical and near real-time remote sensing-based data provide consistent and large-scale coverage to assess past and monitor current meteorological, hydrological, and agricultural droughts
 - Data Include: precipitation, NDVI, soil moisture, ET, & ground water estimates
- These data
 - have different spatial and temporal resolutions and coverage
 - require appropriate analysis and synthesis for drought monitoring
- Precipitation anomalies, their magnitudes, spatial extent, and duration provide indications of short to long term drought conditions, and the potential for agricultural and hydrological droughts
- NDVI can be used to assess vegetation health
- Negative NDVI anomalies may indicate drought conditions and/or fallowed land

Thank you!

- The Homework Assignment is Due August 2, 2017
 - Available at: <u>http://arset.gsfc.nasa.gov/water/webinars/drought17</u>
- To keep up-to-date on available ARSET training, join the ARSET listserv:
 - https://lists.nasa.gov/mailman/listinfo/arset