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Training Outline

Overview of Agricultural 
Remote Sensing

Soil Moisture for Agricultural 
Applications

Earth Observations for 
Agricultural Monitoring

April 14, 2020 April 21, 2020 April 28, 2020 May 5, 2020

Evapotranspiration & 
Evaporative Stress Index for 

Agricultural Applications

https://earthobservatory.nasa.gov/im
ages/90095/satellites-eye-winter-
cover-crops

https://earthobservatory.nasa.gov/im
ages/42428/water-use-on-idahos-
snake-river-plain

https://earthobservatory.nasa.gov/i
mages/87036/soil-moisture-in-the-
united-states

https://eospso.nasa.gov/content/nasas-
earth-observing-system-project-science-
office

https://earthobservatory.nasa.gov/images/90095/satellites-eye-winter-cover-crops
https://earthobservatory.nasa.gov/images/42428/water-use-on-idahos-snake-river-plain
https://earthobservatory.nasa.gov/images/87036/soil-moisture-in-the-united-states
https://eospso.nasa.gov/content/nasas-earth-observing-system-project-science-office
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Homework and Certificate

• Homework Assignments found on the training page: 
https://arset.gsfc.nasa.gov/water/webinars/remote-sensing-for-agriculture-20
– Answers must be submitted via Google Form
– Due date: May 12

• A Certificate of Completion will be awarded to those who: 
– Attend all webinars
– Complete all homework assignments 

• You will receive a certificate approximately two months after the completion of 
the course from: marines.martins@ssaihq.com

https://arset.gsfc.nasa.gov/water/webinars/remote-sensing-for-agriculture-20
http://ssaihq.com
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What is Evapotranspiration?

• Evapotranspiration is the sum of evaporation from the soil surface, evaporation of 
water intercepted by the canopy, and transpiration from vegetation. 
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Atmospheric Controls on Transpiration from Plants

The amount of water that plants transpire varies greatly geographically and over time. There 
are a number of factors that can determine transpiration rates:

• Temperature: Transpiration rates go up as the temperature goes up, especially during the 
growing season when the air is warmer. 

• Atmospheric Moisture: As the relative humidity of the air rises, the transpiration rate falls. It is 
easier for water to evaporate into dryer air than into more saturated air.

• Wind: Increased movement of the air around a plant will result in a higher transpiration rate, 
as turbulence can mix drier air near the plant surface.

• Soil Moisture: When moisture is lacking, plants can begin to senesce (premature aging, 
which can result in leaf loss) and transpire less water.
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Why do we need to measure ET for Agricultural Applications?

• Irrigation management

• Monitoring drought and crop stress

• Yield prediction

• Water use accounting

• Crop water productivity (crop per drop)
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How do we measure ET?… Observational Systems

Eddy Covariance:

• The most direct method of measuring evapotranspiration
is with the eddy covariance technique, in which fast
fluctuations of vertical wind speed are correlated with
fast fluctuations in atmospheric water vapor density.

Lysimeter:

• One method for measuring evapotranspiration is with a lysimeter. The weight of a 
soil column is measured continuously and the change in storage of water in the soil 
is modeled by the change in weight.

https://en.wikipedia.org/wiki/Lysimeter
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How do we measure ET?... Models

Land Data Assimilation Systems: Land surface models (LSMs) predict energy, water, and 
momentum fluxes by solving the governing equations of the land-atmospheric medium. By 
constraining, LSMs with observed atmospheric boundary conditions and land surface states, 
estimates of evapotranspiration can be made.

Advantages: 

• Can be made wherever adequate atmospheric forcing data is available.

• Provides high temporal resolution of ET estimates/Available at varying spatial resolutions.

Disadvantages:

• Errors in atmospheric forcing (e.g., precipitation) will lead to downstream effects on ET 
accuracy.

• Can experience “model drift” due to errors in atmospheric forcing or model physics.

https://ldas.gsfc.nasa.gov/ldas/land-data-assimilation-system
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Satellite Methods for Estimating ET

Crop Coefficient/Eto Methods

• Evapotranspiration is estimated by computing a measure of reference ET (Eto) from 
an agricultural weather station and applying a crop coefficient (Kc). 

• One established method is the NASA Satellite Irrigation Management Support 
(SIMS) framework (Melton et al., 2012). 

• SIMS uses Landsat NDVI to estimate crop fractional cover, along with estimates of 
crop height and stomatal control to estimate Kc. 

• Limitations of methods such as this are less sensitivity to transitory ET decreases  
from intermittent deficit irrigation or ET increases from bare soil surfaces or shortly 
after precipitation events.
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Satellite Methods for Estimating ET

Energy Balance Methods

• These methods for estimating ET are grounded in the theory behind the surface 
energy balance model, where available energy at the surface from shortwave 
and longwave radiation is balanced by fluxes from surface heating (e.g., sensible 
heat flux) and exchange of water vapor (e.g., latent heat flux). 

• Energy balance models can be divided into two categories:

– (1) Single-source energy balance models, where vegetation and soil are 
analyzed in a combined energy budget.

– (2) Two-source energy balance models, where vegetation and soil energy 
budgets are analyzed separately. 
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Satellite Methods for Estimating ET

Energy Balance Methods

Examples of these methods include:

(1) Surface Energy Balance Algorithm for Land (SEBAL; Bastiaanssen et al. 1998)

(2) Surface Energy Balance System (SEBS; Su 2002)

(3) Mapping Evapotranspiration at High Resolution with Internalized Calibration 
(METRIC; Allen et al. 2007)

(4) Operational Simplified Surface Energy Balance (SSEBop; Senay et al. 2007, 2013)

(5) Atmosphere-Land Exchange Inverse (ALEXI) and DisALEXI (Anderson et al. 1997)
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ALEXI: Atmosphere Land Exchange Inverse Model
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ALEXI: Atmosphere Land Exchange Inverse Model
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ALEXI: Atmosphere Land Exchange Inverse Model
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Integration of Moderate-Resolution LST into ALEXI/DisALEXI
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Integration of Moderate-Resolution LST into ALEXI/DisALEXI
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ALEXI Intra-field ET variability



NASA’s Applied Remote Sensing Training Program 19

Case Study for Grape Production in the Central Valley
GRAPE REMOTE SENSING ATMOSPHERIC PROFILE AND EVAPOTRANSPIRATION EXPERIMENT (GRAPEX)

1

2

Site 1: Pinot Noir (2009)

Site 2: Pinot Noir (2011)

Lodi, CA

2013 - Present
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1
2

Case Study for Grape Production in the Central Valley
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ALEXI Water Accounting Case Study

Corn
Alfalfa
Wetland
Pasture
Upland herb.

Rice
Summer fallow
Forage grass
Riparian
Water

Tomatoes
Vineyards
Urban
Almonds
Semi-ag/row



NASA’s Applied Remote Sensing Training Program 22

ALEXI Water Accounting Case Study
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ALEXI Water Accounting Case Study
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Integration of Microwave LST into ALEXI

• The synergy between Thermal Infrared (TIR) and Microwave (MW) observations is 
further being exploited by the development of Land Surface Temperature (LST)  
observations from MW observations (Ka-band).

• The integration of MW LST into a coupled TIR/MW ALEXI system will allow for retrieval 
of surface fluxes under cloud cover (where TIR-only retrievals are not possible). 

• This capability fills in a significant gap in a TIR-only system over tropical equatorial 
regions where clear-sky retrievals may only be possible 1 to 3 times per month, 
particularly during the wet season.  



NASA’s Applied Remote Sensing Training Program 25

Integration of Microwave LST into ALEXI
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Evolution of Agricultural Drought
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Evaporative Drought Demand Index (EDDI)
https://www.esrl.noaa.gov/psd/eddi/

• EDDI exploits the strong physical relationship between evaporative demand and 
actual loss of water from the land surface through ET. 

• Evaporative demand can be explained as the “thirst of the atmosphere,” 
estimated by the amount of water that would evaporate from the land surface 
under well-watered conditions. 

• EDDI measures the signal of potential for future drought by using information on 
the rapidly evolving (e.g., daily timescales) conditions of the atmosphere to 
estimate the “potential” impact on the land surface.

• EDDI has no physical tie to actual land surface conditions, thus can only show 
“potential” for the development of drought, and it can not show “actual” drought 
conditions in isolation. 

*Índice de Sequía por Demanda Evaporativa

https://www.esrl.noaa.gov/psd/eddi/
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Evaporative Drought Demand Index (EDDI)
https://www.esrl.noaa.gov/psd/eddi/

https://www.esrl.noaa.gov/psd/eddi/
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Evaporative Stress Index (ESI)

ALEXI ESI represents temporal anomalies in the ratio of actual ET to potential ET. 

• ESI does not require precipitation data, the current surface moisture state is 
deduced directly from the remotely sensed LST. Therefore, it may be more robust 
in regions with minimal in-situ precipitation monitoring.

• Signatures of vegetation stress are manifested in the LST signal before any 
deterioration of vegetation cover occurs, for example as indicated in NDVI, so 
TIR-based indices such as ESI can provide an effective early warning signal of 
impending agricultural drought. 

• ALEXI ESI inherently includes non-precipitation related moisture signals (such as 
irrigation, vegetation rooted to groundwater, and lateral flows) that need to be 
modeled a priori in prognostic LSM schemes.
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Evaporative Stress Index (ESI)

Drier Than Normal Wetter Than Normal
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ESI and “Flash Droughts”

Las sequías repentinas son eventos de inicio 
Flash droughts are rapid onset events typically
driven by:

1) Precipitation deficits
2) High temperature anomalies
3) Strong winds
4) Anomalous incoming solar radiation

• ESI has the potential to provide an early 
warning for such events, since water stress is 
detectable in the LST signal before 
degradation in the vegetation health occurs.

• It can do so while providing information 
about actual vegetation stress and not just 
the potential for vegetation stress (e.g., PET-
driven drought indicators).  
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ESI and Prediction of Crop Yield Anomalies

• Examines drought conditions during 
critical crop stages

• Strong relationship between wheat 
yield and the ESI and VegDRI during 
critical crop stages

• NLDAS has strong (weak) 
relationship to corn/soybeans 
(wheat) yield

• ESI had strongest correlation to the 
wheat, corn, and soybean yield 
departures
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OpenET: A Google Earth Engine ET Monitoring System
https://etdata.org/

https://etdata.org/
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OpenET: A Google Earth Engine ET Monitoring System
https://etdata.org/

https://etdata.org/
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Question & Answer Session

• Please enter your questions in the Q&A box.
• We will post the questions and answers to the training website following the 

conclusion of the course: 
https://arset.gsfc.nasa.gov/water/webinars/remote-sensing-for-agriculture-20

Contacts: 
• Christopher Hain: christopher.hain@nasa.gov
• Sean McCartney: sean.mccartney@nasa.gov
• Amita Mehta: amita.v.mehta@nasa.gov

https://arset.gsfc.nasa.gov/water/webinars/remote-sensing-for-agriculture-20
http://nasa.gov
http://nasa.gov
http://nasa.gov

