



# MODIS to VIIRS Transition for Air Quality Applications

Pawan Gupta (USRA/MSFC) and Melanie Follette-Cook (MSU/GSFC)

October 22, 2020, Online Training

#### Course Structure and Materials

- Webinar recordings, PowerPoint presentations, and the homework assignment can be found after each session at:
  - https://appliedsciences.nasa.gov/joi n-mission/training/english/modis-viirstransition-air-quality-applications
  - Q&A following each lecture and/or by email at:
    - <u>pawan.gupta@nasa.gov</u> or
    - melanie.cook@nasa.gov



## **Learning Objectives**



By the end of this training, participants will:

- Access NASA VIIRS aerosol products through Earthdata
- Describe the differences between the MODIS and VIIRS instruments and aerosol optical depth (AOD) products
- Understand how VIIRS aerosol optical depth observations can be used for air quality applications





Satellites and Sensors

## NOAA Series of Satellites – Historical Perspective



## **NOAA Polar Satellite Programs Continuity of Weather Observations**





https://www.nesdis.noaa.gov/sites/default/files/asset/document/POES\_Flyout\_April\_2019\_Signature.pdf



#### **S-NPP Satellite**

 Named after Verner E. Suomi, a meteorologist at the University of Wisconsin, who is recognized widely as "the father of satellite meteorology."

#### Sensors

- VIIRS (Visible/Infrared Imager and Radiometer Suite) – Land, Atmosphere, Ocean
- CrIS (Cross-Track Infrared Sounder)- Water Vapor, Pressure
- OMPS (Ozone Mapping and Profiler Suite) Ozone
- ATMS (Advanced Technology Microwave Sounder) – Moisture and Temperature
- CERES (Clouds and the Earth's Radiant Energy System) – Energy Budget



https://directory.eoportal.org/web/eoportal/satellite-missions/s/suomi-npp



## Moderate Resolution Imaging Spectroradiometer (MODIS)

- 2000 Present
- Spatial Resolution:
  - 250 m, 500 m, 1 km
- Platforms:
  - Terra (morning overpass time)
  - Aqua (afternoon overpass time)
- Temporal Resolution:
  - Daily, 8-day, 16-day, monthly, yearly
- Spectral Coverage:
  - 36 Bands (major bands include red, blue, IR, NIR, MIR)
- Provide measurements of land, water, and atmosphere







## Visible Infrared Imaging Radiometer Suite (VIIRS)

- 2011 Present
- Spatial Resolution:
  - 375 m, 750 m
- Platforms:
  - SNPP, NOAA20 (JPSS1) Current
  - JPSS2, JPSS3 Future
- Temporal Resolution:
  - Daily, 8-day, 16-day, monthly, yearly
- Spectral Coverage:
  - 22 bands (major bands include red, blue, IR, NIR, MIR)
- Provide measurements of land, water, and atmosphere









MODIS vs. VIIRS

## MODIS vs. VIIRS – Historical Perspective

- S-NPP serves at the bridge between NASA EOS and JPSS satellites.
- JPSS previously called NPOESS
- JPSS is developed by NASA for NOAA

MODIS - Moderate Resolution Imaging Spectroradiometer

VIIRS – Visible Infrared Imaging Radiometer Suite

NPOESS - National Polar-orbiting Operational

Environmental Satellite System

**S-NPP** - Suomi National Polar-orbiting Partnership

JPSS - Joint Polar Satellite System (NOAA 20)

**EOS** - Earth Observing System

#### NASA EOS Missions



#### NASA-NOAA Joint Mission





## MODIS vs. VIIRS - Coverage











## Visible Infrared Imaging Radiometer (VIIRS)

A multi-wavelength imager like MODIS with similar wavelength bands

|                              | MODIS              | VIIRS-SNPP       | VIIRS-N20        |
|------------------------------|--------------------|------------------|------------------|
| Orbit Altitude               | 690 km             | 824 km           | 824              |
| <b>Equator Crossing Time</b> | 13:30 LT           | 13:30 LT         | 12:40 LT         |
| Swath                        | 2,330 km           | 3,060 km         | 3,060 km         |
| Pixel Nadir                  | 0.5 km             | 0.75 km          | 0.75 km          |
| Pixel Edge                   | 2 km               | 1.5 km           | 1.5 km           |
| Spectral Coverage            | 0.405 to 14.385 µm | 0.412 to 12.1 µm | 0.412 to 12.1 µm |
| Spectral Bands               | 36                 | 22               | 22               |





True Color Images

## True Color Image (or RGB)

A MODIS "true color image" uses visible wavelength bands 1, 4, 3.

 $R = 0.66 \, \mu m$ 

 $G = 0.55 \, \mu m$ 

 $B = 0.47 \, \mu m$ 

A VIIRS "true color image" uses visible wavelength bands 11, M4, M3.

 $R = 0.640 \, \mu m$ 

 $G = 0.555 \, \mu m$ 

 $B = 0.488 \mu m$ 



## NASA Data Visualization – Level 1 & 2 – Near Real Time

https://worldview.earthdata.nasa.gov/





Air Quality-Relevant Observations

## Data Products Relevant to Air Quality

|                          | MODIS (T & A) | VIIRS-SNPP | VIIRS-N20 |
|--------------------------|---------------|------------|-----------|
| Aerosol Optical<br>Depth |               |            |           |
| Smoke Detection          | X             |            |           |
| Dust Detection           | X             |            |           |
| Fire Detection           |               |            |           |
| True Color Image         |               |            |           |





NASA Aerosol Data

## **Aerosol Data - NASA Products**

|                    | MODIS (T & A)            | VIIRS-SNPP    | VIIRS-NOAA20 |
|--------------------|--------------------------|---------------|--------------|
| Data               | AOD                      | AOD           | X            |
| Spatial Resolution | 1, 3, 10 km              | 6 km          | X            |
| Global Coverage    | 1-2 days                 | Daily         | Daily        |
| Algorithm          | DT, DB, MAIAC            | DB, DT        | X            |
| Data Availability  | 2000 (2003) -<br>current | 2012- current | 2017-current |
| Data Format        | HDF                      | NetCDF        | X            |

DT = Dark Target DB = Deep Blue

MAIAC = Multi-Angle Implementation of Atmospheric Correction





#### **SNPP VIIRS – NASA Products**

- Deep Blue (DB)
  - Spatial resolutions: 6 km (Level 2), 1 deg. (Level 3)
  - Products: AOD, Angstrom Exponent, Aerosol Type
  - Short name: AERDB\_L2
  - <a href="https://deepblue.gsfc.nasa.gov/">https://deepblue.gsfc.nasa.gov/</a>
- Dark Target (DT)
  - Spatial resolutions: 6 km (Level 2), 1 deg. (Level 3)
  - Products: AOD
  - Short name: AERDT\_L2\_VIIRS\_SNPP
  - https://ladsweb.modaps.eosdis.nasa.gov/missionsand
    - measurements/products/AERDT\_L2\_VIIRS\_SNPP/

## October 05, 2020



https://go.nasa.gov/2GzTOye



#### File Names

Deep Blue and Dark Target data sets comes in two different files.



AERDB\_D3\_VIIRS\_SNPP.A2020251.001.2020255000324.nc AERDB\_M3\_VIIRS\_SNPP.A2020214.001.2020252000719.nc

- Dark Target File
  - AERDT\_L2\_VIIRS\_SNPP.A2020251.2042.001.2020252071112.nc



## **VIIRS DB Aerosols**

## https://deepblue.gsfc.nasa.gov/data#data-viirs

- Level 2
  - 6-minute file
  - 6x6 km nadir resolution
- Level 3
  - Daily
  - Monthly
  - 1x1 degree
- NetCDF4

| SDS name                                               | Description                                                                                            |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| L2 files (AERDB_L2)                                    |                                                                                                        |  |  |
| Latitude                                               | Central latitude of the retrieval pixel, degrees North.                                                |  |  |
| Longitude                                              | Central longitude of the retrieval pixel, degrees East.                                                |  |  |
| Aerosol_Optical_Thickness_550_Land                     | The AOD at 550 nm over land.                                                                           |  |  |
| Aerosol_Optical_Thickness_550_Land_Best_Estimate       | As above, except only populated for those retrieval pixels passing quality assurance tests.            |  |  |
|                                                        | This is the SDS that is it anticipated the majority of data users will use.                            |  |  |
| Aerosol_Optical_Thickness_550_Ocean                    | The AOD at 550 nm over ocean                                                                           |  |  |
| Aerosol_Optical_Thickness_550_Ocean_Best_Estimate      | As above, except only populated for those retrieval pixels passing quality assurance tests.            |  |  |
|                                                        | This is the SDS that is it anticipated the majority of data users will use.                            |  |  |
| Aerosol_Optical_Thickness_550_Land_Ocean               | The combined AOD at 550 nm, from the Deep Blue algorithm over land, and the SOAR algorithm over water. |  |  |
| Aerosol_Optical_Thickness_550_Land_Ocean_Best_Estimate | As above, except only populated for those retrieval pixels passing quality assurance tests.            |  |  |
|                                                        | This is the SDS that is it anticipated the majority of data users will use.                            |  |  |



## **Validation**

#### https://doi.org/10.1029/2018JD029688





## Validation – Temporal Consistency

#### https://doi.org/10.1029/2018JD029688



## **VIIRS Deep Blue Aerosol Reference**

- Hsu, N. C., J. Lee, A. M. Sayer, et al. 2019.
   "VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Long-Term Aerosol Data Records." Journal of Geophysical Research: Atmospheres 124 (7): 4026-4053 [10.1029/2018jd029688]
- Sayer, A. M., N. C. Hsu, J. Lee, W. V. Kim, and S. T. Dutcher. 2019. "Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land." Journal of Geophysical Research:
   Atmospheres 124 (8): 4658-4688
   [10.1029/2018jd029598]









How to Access the Data

## NASA Aerosol Data Download – Level 1, 2, 3 - Historical

https://ladsweb.modaps.eosdis.nasa.gov/



#### **NASA Aerosol Data Download**

https://ladsweb.modaps.eosdis.nasa.gov/





AOD Example

## MODIS vs. VIIRS – September 27, 2020

## https://go.nasa.gov/3nlrOyz





MODIS-Aqua (DB)

VIIRS-SNPP (DB)

# Application – MODIS- Aqua (Sep 7<sup>th</sup>, 2020)



# Application – VIIRS-SNPP (Sep 7<sup>th</sup>, 2020)





NOAA Aerosol Data

## **Aerosol Data - NOAA Products**

|                    | MODIS (T & A) | VIIRS-SNPP              | VIIRS-N20               |
|--------------------|---------------|-------------------------|-------------------------|
| Data               | X             | AOD<br>Smoke, Dust Mask | AOD<br>Smoke, Dust Mask |
| Spatial Resolution | X             | 750m, 6 km              | 750m, 6 km              |
| Global Coverage    | X             | Daily                   | Daily                   |
| Algorithm          | X             | NOAA                    | NOAA                    |
| Data Availability  | X             | 2012- current           | 2017-current            |



#### **Aerosol Data - NOAA Products**

#### **Filenames**

NOAA has two aerosol products (datasets):

- Aerosol Optical Depth
  - JRR-AOD\_v2r3\_i01\_s202009280811382\_e202009280813027\_c202009280832280.nc
  - JRR-AOD\_v2r3\_npp\_s202009280709032\_e202009280710274\_c202009280749220.nc
- Aerosol Detection Product (ADP)
  - JRR-ADP\_v2r1\_npp\_s201911010742162\_e201911010743404\_c201911010834210.nc
  - 6 Type Flags: (1-presence; 0-absence) 1. Volcanic ash flag 2. Dust flag 3. Smoke flag 4. Nuc (none/unknown/clear) 5. Cloud flag 6. Snow/ice flag
  - Dust/Smoke Aerosol Index Value
  - Quality Flags (low, medium, and high confidence for each type)



#### VIIRS Smoke Mask - NOAA



- Smoke Mask: Qualitative indicator of smoke
- Derived using spectral and spatial threshold tests based on VIIRS measurements in visible and IR
- Useful for identifying local and transported smoke plumes
- Colored shades of pink
- Light Pink: Thin Smoke
- Bright Pink/Magenta: Thick Smoke

Side Courtesy of Shobha Kondragunta





## Dust Mask – Saharan Dust Transport of Summer 2020

https://www.star.nesdis.noaa.gov/jpss/mapper



#### Smoke from Western US Fires – Smoke Mask

https://www.star.nesdis.noaa.gov/jpss/mapper



## Smoke from Western US Fires – Aerosol Optical Depth

https://www.star.nesdis.noaa.gov/jpss/mapper



## Low vs. High Resolution AOD Data





Side Courtesy of Shobha Kondragunta



### **Validation**





Slide by Hongqing Liu (NOAA)



## Aerosol Optical Depth – Application





https://twitter.com/AerosolWatch/status/1314208278222569472

Daily (24-Hour Average) Fine Particles Estimated from VIIRS Aerosol Optical Depth 07 Oct 2020





#### **NOAA** Data Visualization

https://www.star.nesdis.noaa.gov/jpss/mapper/



#### **NOAA Data Download**

- NOAA CLASS
  - https://www.avl.class.noaa.go
     v/saa/products/welcome
- Register; Login; User Preference
- Select JPSS VIIRS Products (Granule) (JPSS\_GRAN) from the drop-down list at the top of the CLASS page and click GO

More Details - Click Here







Data Reading, Mapping, and Extracting – Jupyter Notebook Demonstration



Step 1: Go to <a href="https://github.com/NASAARSET/">https://github.com/NASAARSET/</a>, click on VIIRS\_NASA



#### Step 2: Click on read\_and\_map\_viirs.ipynb



Step 3: Above the code, click 'Raw'. This will display the raw code.



Step 4: Click Ctrl+S to save to your computer as a .ipynb file.

```
"nbformat": 4,
"nbformat minor": 0,
"metadata": {
 "colab": {
   "name": "read and map viirs.ipynb",
   "provenance": [],
   "collapsed sections": []
 "kernelspec": {
   "name": "python3",
   "display_name": "Python 3"
"cells": [
   "cell_type": "markdown",
   "metadata": {
     "id": "im8zRbMslQLL"
   "source": [
     "**Module:** read_and_map_viirs.ipynb\n",
     "**Disclaimer**: The code is for demonstration purposes only. Users are responsible to check for accuracy and revise to fit their objective.\n",
     "**Organization**: NASA ARSET\n",
     "**Author**: Justin Roberts-Pierel and Pawan Gupta, 2015.\n",
     "**Modified to work with netCDF** : Vikalp Mishra, 2019 \n",
     "**Modified to work with VIIRS data**: Aavash Thapa, 2020\n",
     "**Purpose**: To extract variables from a VIIRS netCDF4 file and create and save a map of the data"
   "cell_type": "code",
   "metadata": {
     "id": "Y7U02gkECz6c"
   "source": [
     "#Mount drive to save files there\n",
     "#clone the repository to access files from there\n",
     "#pull the latest\n",
     "from google.colab import drive\n",
     "drive.mount('/content/drive', force_remount=True)\n",
     "! git clone https://github.com/NASAARSET/VIIRS NASA.git\n",
     "! git -C VIIRS_NASA/ pull"
```

Make sure you save the file with the extension ".ipynb"!





Install Google Colaboratory Add-on and Add Notebooks to 'Colab Notebooks' folder on Google Drive

Step 1: Go to drive.google.com and click the + on the right to add add-ons.



#### Step 2: Search for "Colaboratory" and install.





Step 3: Add Notebook to Google Drive by dragging over files, or clicking New → File Upload.

\* If you already had Colaboratory installed, add the file to your Colab Notebooks folder. \*





Step 3a: Right-click on your file and click "Make a copy". This will create the Colab Notebooks folder in your Google Drive. The file copy will be inside this folder.

\* This step is only necessary if you had to install Colaboratory. \*





Run Jupyter Notebooks using Google Colaboratory

Step 1a: Double click your file to open it and choose Open with Google Colaboratory.



Step 1b: Once open, click File > Save a copy in Drive. This will automatically create a duplicate copy in a folder called "Colab Notebooks".



#### Step 2: Run each cell of your notebook in order.



Step 2a: The first time you run each code you will need to get an authorization code from Google File Stream. Click the link and choose your google drive account.







#### Step 2b: Click Allow and copy the code.





#### Step 2c: Paste the code into the notebook and hit Enter.



Step 2c: Paste the code into the notebook and hit Enter.



#### Step 3: Run the next cell to import the necessary libraries.



#### Step 4: Run the last cell to run the code.



#### Step 4: Enter Y to process the file.

```
♠ read and map viirs.ipynb ☆
       File Edit View Insert Runtime Tools Help
     + Code + Text
\equiv
                    cb = plt.colorbar(shrink = 0.7)
                    cb.set label(map label, fontsize =9, wrap=True)
                      grd = m.gridlines(crs=ccrs.PlateCarree(), draw labels=True, linewidth=2, color='gray', alpha=0.5, linestyle='--')
                      grd.xlabels top = None
<>
                     grd.ylabels right = None
                     grd.xformatter = LONGITUDE FORMATTER
grd.yformatter = LATITUDE FORMATTER
                    # Show the plot window.
                    plt.show()
                    #once you close the map it asks if you'd like to save it
                    #change 'raw input' to 'input' if an error is shown about the input
                    is save=str(input('\nWould you like to save this map? Please enter Y or N \n'))
                    if is save == 'Y' or is_save == 'y':
                                                                                                                                           This is where your map will
                     #saves as a png if the user would like
                     pngfile = '{0}.png'.format(FILE_NAME[:-3])
                      fig.savefig('/content/drive/My Drive/Colab Notebooks/' + pngfile, dpi = 300, bbox inches='tight')
                                                                                                                                            be saved.
                  #close the hdf5 file
                  file.close()
          Would you like to process
                   VIIRS SNPP.A2020056.1954.001.2020057113600.nc
```

Step 5: Enter 2 (Aerosol\_Optical\_Thickness\_550\_Land\_Ocean\_Best\_Estimate) and then enter Y to create a map. Then enter Y to save it to your Google Drive/Colab Notebooks/ folder.



#### **Questions**

- Please enter your questions into the Q&A box.
- We will post the questions and answers to the training website following the conclusion of the course.



#### Contacts

- Contacts
  - Pawan Gupta: <u>pawan.gupta@nasa.gov</u>
  - Melanie Follette-Cook: <u>melanie.cook@nasa.gov</u>
- General ARSET Inquiries
  - Ana Prados: <u>aprados@umbc.edu</u>
- ARSET Website:
  - appliedsciences.nasa.gov/arset





**Thank You!**